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Chapter 1

Review of Matrix Algebra

1.1 Notational Conventions

In this section we outline some notational conventions used throughout the

text for scalars, vectors, matrices etc. We follow these conventions consis-

tently and any deviations from them are clearly indicated.

1. Scalars are given in lowercase roman italic type. For example, x and θ

are to be taken as scalars.

2. Vectors are given in lowercase bold italic type. For example, x and

θ are to be taken as vectors. All vectors are taken as column vectors

unless otherwise noted. The elements of a vector are denoted by low-

ercase italic type subscripted by italic roman letters. For example, the

elements of the (m × 1) vector x are denoted by x1, x2, ..., xm and we
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have that:

x =


x1

x2

...

xm

 (1.1)

3. Matrices are given in uppercase bold type. For example, X and Σ

are to be taken as matrices. The elements of a matrix are denoted by

lowercase italic type (doubly) subscripted by italic roman letters. For

example, the elements of the (m×n) matrix X are denoted by xij, for

i = 1, 2, ...,m and j = 1, 2, ..., n and we have that:

X =


x11 x12 . . . x1n

x21 x21 . . . x2n

...
...

...
...

xm1 xm2 . . . xmn

 (1.2)

4. The transpose of a vector or a matrix is denoted by the traspose symbol,

>. For example, the transpose of an arbitrary matrix X is denoted by

X>. Note that in many other textbooks a prime ′ is used in place of

>.

5. The rows of a matrix are denoted by lowercase bold italic type, sub-

scripted by italic roman letters and primed. The columns of a matrix

are denoted by uppercase bold type, subscripted by italic roman letters.

For example, the rows of the (m×n) matrix X are denoted by x>i , for

i = 1, 2, ...,m; the columns of X are denoted by Xj, for j = 1, 2, ..., n

2



and we have that:

X =


x>1

x>2
...

x>m

 and X = [X1,X2 . . .Xn] (1.3)

6. Sets are given in uppercase italic type, for roman letters, and plain

uppercase type for Greek letters. For example, A, B and Θ are to be

taken as sets.

7. The set of all integers, including zero, will be denoted by N. The set

of all positive integers will be denoted by N+ and the set of positive

integers, including zero will be denoted N0. The set of all real numbers

will be denoted by R while the set of all positive real numbers will be

denoted R+.

8. The n-dimensional field of real numbers (i.e. the product of R with

itself n times) will be denoted Rn.

9. When first defining a new object, such as a new equation, we use the

notation
def
= instead of simply using the = sign.

1.2 Basic Results

A number of useful, and repeatedly used, results are summarized in this

section. We mainly use definitions, propositions and examples to set forth

these results.
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Definition 1. Let e be an (n × 1) vector with all of its elements equal

to unity, that is e
def
= [1, 1, . . . , 1]>. We call e the unit vector.

Definition 2. Let I be an (n× n) matrix with all of its elements equal

to zero, except those on the main diagonal that are equal to unity, that is:

I
def
=


1 0 . . . 0

0 1 . . . 0
...

...
...

...

0 0 . . . 1

 =


i>1

i>2
...

i>n

 (1.4)

We call I the identity matrix.

Definition 3. For any two (n× 1) vectors x and y we define their inner

product as 〈x,y〉 def
= x>y = y>x =

n∑
i=1

xiyi. Note that the inner product of

two vectors is a scalar. The inner product allows for a concise representation

of many formulas involving summations. Here are some examples.

1. Let x = e; then 〈e,y〉 =
n∑
i=1

yi. Equivalently, n−1〈e,y〉 = ȳ, the

sample mean of all values of y.

2. Let x = y; then 〈x,x〉 =
n∑
i=1

x2
i .

3. Let z = y− eȳ; then (n− 1)−1〈z, z〉 = (n− 1)−1

n∑
i=1

(yi− ȳ)2 = s2, the

sample variance of all values of y.

Definition 4. Let I to be an (n × n) identity matrix and let e be an

(n × 1) unit vector. Define the matrix D
def
=
(
I − n−1ee>

)
. We call D the
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demeaning matrix, since for any (n× k) matrix X we have that:

DX =
(
I − n−1ee>

)
X = X − e

(
n−1e>X

)
=

X − e
[
n−1e>X1, n

−1e>X2, . . . , n
−1e>Xk

]
=

X − e [x̄1, x̄2, . . . , x̄k]

(1.5)

where x̄j is the sample mean of the jth column of X, j = 1, 2, . . . , k. Thus,

applying D to X we substracted from each column the sample mean of that

column’s observations.

Definition 5. For any (n × 1) vector x we define its (Euclidean) norm

‖x‖ as the square root of the inner product of x with itself, ‖x‖ def
=
√
〈x,x〉.

Definition 6. If any two (n × 1) vectors x and y have inner product

〈x,y〉 = 0 we call them orthogonal. If, in addition, ‖x‖ = 1 and ‖y‖ = 1 we

call the vectors orthonormal.

Definition 7. A square (n× n) matrix X is said to be orthogonal if its

columns are orthonormal vectors.

Definition 8. A square (n × n) matrix X is said to be symmetric if it

equals its transpose, i.e. X = X>.

Definition 9. A square (n×n) matrix X is said to be diagonal if xij = 0

for all i 6= j, i, j = 1, 2, ..., n.

Definition 10. A square (n × n) matrix X is said to be scalar if it is

diagonal and if xii = x for all i = 1, 2, ..., n. Note that the identity matrix is

a scalar matrix.

Definition 11. For any square (n × n) matrix X we define its trace
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tr [X] as the sum of its diagonal elements, tr [X]
def
=

n∑
i=1

xii.

Definition 12. For any (n × k) matrix X, with n ≥ k, we define the

(k × k) moment matrix (of squares and cross-products) as SX
def
= (X ′X).

Using the representations of equation (1.3) we also have that SX is given by:

SX =
n∑
i=1

xix
>
i =


X>1X1 X>1X2 . . . X>1Xk

X>2X1 X>2X2 . . . X>2Xk

...
...

...
...

X>kX1 X>kX2 . . . X>kXk

 (1.6)

Note that SX is a symmetric matrix.

Definition 13. For any (n × k) matrix X, with n ≥ k, we define its

norm ‖X‖ as the square root of the trace of the moment matrix SX , i.e.

‖X‖ def
=
√

tr [SX ].

Definition 14. For any square (n×n) matrixX we define its characteris-

tic roots as the numbers {r}ni=1 that are solutions (roots) to the determinantal

equation |rI −X| = 0.

Proposition 1. For any (n×k) matrix X, with n ≥ k, the characteristic

roots of its moment matrix SX are non-negative.

Definition 15. For any (n × k) matrix X, with n ≥ k, we define its

rank % [X] to be the number of positive characteristic roots of the moment

matrix SX . We say that X is of full rank if all k characteristic roots of the

moment matrix SX are positive.

Definition 16. For any (n× k) matrix X, with n ≥ k, let {r}ki=1 be the
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k characteristic roots of its moment matrix SX , arranged in ascending order.

The condition number of SX is given by c∗
def
=
√
rk/r1.

Definition 17. For any full rank, square (n× n) matrix X we define its

inverse X−1 as the matrix satisfying X−1X = XX−1 = I. If X is not of

full rank then its inverse does not exist and we say that X is singular.

Definition 18. Let X be an (n×k) matrix, with n ≥ k, and of full rank

k. Then, the square (n × n) matrix PX
def
= X (X ′X)

−1
X ′ = XS−1

X X
> is

called the projection matrix of X.

Proposition 2. Let y be an (n×1) vector and letX be an (n×k) matrix,

with n ≥ k. There exists an (n × 1) vector ŷ
def
= PXy called the projection

of y on (the space spanned by the columns of) X such that ‖y − ŷ‖2 is

minimized.

Proposition 3. If X is an orthogonal matrix then is of full rank and

X> = X−1.

Proposition 4. The trace of a square (n× n) matrix X equals the sum

of its characteristic roots, tr [X] =
n∑
i=1

ri.

Definition 19. Let A be a square (n× n), symmetric matrix and x be

a (n× 1) vector. We call the scalar qA = x>Ax a quadratic form in A.

Proposition 5. Let A be a square (n× n), symmetric matrix and x be

a (n× 1) vector. Then, the following is true: qA ≡ tr
[
x>Ax

]
≡ tr

[
Axx>].

Definition 20. Let A be a square (n × n), symmetric matrix and x

be a non-zero (n × 1) vector. We say that A is positive semi-definite if the
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quadratic qA = x>Ax ≥ 0. We say that A is positive definite if strict

inequality holds. We say that A is a negative (semi) definite matrix if −A

is positive (semi) definite. A positive (or negative) definite matrix is a full

rank matrix.

Proposition 6. Let X be a square (n × n), positive definite matrix.

Then, there exists a square (n×n), positive definite matrix called the square

root of X, denoted by X1/2, such that X can be decomposed as X
def
=

X1/2>X1/2. If X is a symmetric matrix then X1/2 is also symmetric.

Definition 21. Let β be an (k×1) vector of parameters and let g(β) be

a scalar function of β. Then, we define the gradient vector to be the (k× 1)

vector whose jth element is the partial derivate of g(β) with respect to the

jth element of β. We denote the gradient vector by G [g(β)]. We have:

G [g(β)]
def
=



∂g(β)
∂β1

∂g(β)
∂β2

...

∂g(β)
∂βk

 (1.7)

Definition 22. Let β be an (k × 1) vector of parameters and let g(β)

be a scalar function of β. Then, we define the Hessian matrix to be the

(k × k) matrix whose (i, j)th element is the cross-partial derivate of g(β)

with respect to the ith and the jth elements of β. We denote the Hessian
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matrix by H [g(β)]. We have:

H [g(β)]
def
=



∂2g(β)
∂β2

1

∂2g(β)
∂β1∂β2

. . .
∂2g(β)
∂β1∂βk

∂2g(β)
∂β2∂β1

∂2g(β)
∂β2

2
. . .

∂2g(β)
∂β2∂βk

...
...

...
...

∂2g(β)
∂βk∂β1

∂2g(β)
∂βk∂β2

. . .
∂2g(β)
∂β2

k

 (1.8)

Definition 23. Let β be an (k × 1) vector of parameters and let g(β)

be a scalar function of β. Then, we define the second-order Taylor series

approximation of g(β) around a vector β0 as:

g(β) ≈ g(β0) + (β − β0)
>G [g(β0)] + (β − β0)

>H [g(β0)] (β − β0)⇒

g(β) ≈ g(β0) +
k∑
i=1

(βi − βi0)
∂g(β0)

∂βi
+

k∑
i=1

k∑
j=1

(βi − βi0)(βj − βj0)
∂2g(β0)

∂βi∂βj

(1.9)

Definition 24. Let β be an (k × 1) vector of parameters and let g(β)

be an (n× 1) vector function of β. Then, we define the Jacobian matrix to

be the (n× k) matrix whose ith row is the (transpose of the) gradient vector

of the ith row of g(β) with respect to β. We denote the Jacobian matrix by

J [g(β)]. We have:

J [g(β)]
def
=


G [g1(β)]>

G [g2(β)]>

...

G [gn(β)]>

 (1.10)

Proposition 7. Let β be an (k×1) vector of parameters and let g(β) be

an (n×1) vector function of β. Let A be a square (n×n), symmetric matrix

(not depending on β) and define the quadratic form qA(β) = g(β)>Ag(β).
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Then, the gradient vector of qA(β) with respect to β is given by:

G [qA(β)]
def
= 2J [g(β)]>Ag(β) (1.11)

Proposition 8. Let β be an (k×1) vector of parameters and let g(β) be

an (n×1) vector function of β. Let A be a square (n×n), symmetric matrix

(not depending on β) and define the quadratic form qA(β) = g(β)>Ag(β).

Assume that the Jacobian J [g(β)] = J, so that it does not depend on β.

Then, the Hessian matrix of qA(β) with respect to β is given by:

H [qA(β)]
def
= 2J>AJ (1.12)

1.3 Exercises

1. Let X be an (n × k) matrix, with n ≥ k. Consider the projection

matrix PX = X (X ′X)
−1
X ′. Show that the following are true: (a)

PX
> = PX , (b) PX

>PX = PXPX
> = PX .

2. LetX be an (n×k) matrix, with n ≥ k. Consider the projection matrix

PX of the previous exercise and define the matrix MX
def
= I − PX .

Show that the following are true: (a) MXX = 0, (b) MXPX = 0, (c)

MX
> = MX , and (d) MX

>MX = MXPX
> = MX .

3. For the demeaning matrix D is it true that De = 0?
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Chapter 2

Review of Probability and

Statistics

2.1 Notational Conventions

In this section we outline some notational conventions used throughout the

text for denoting samples, expectations, variances, probability densities, es-

timators etc. We follow these conventions consistently and any deviations

from them are clearly indicated.

1. A random sample of size n or T for a (k × 1) random vector x will be

denoted by {xi}ni=1 or {xt}Tt=1.

2. The expectation operator for any (n × 1) random vector x will be

denoted by E [x].

3. The variance operator for any random variable x is to be denoted by

Var [x] while the variance-covariance operator for any (n × 1) random
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vector x is to be denoted by Cov [x].

4. The conditional expectation operator for any (n× 1) random vector x,

conditional on some collection (σ-algebra) of random vectors G is to be

denoted by E [x|G].

5. The probability density function (pdf) of an arbitrary random variable

x, possibly depending on a vector of unknown parameters θ, will be

denoted by f(x;θ) and its corresponding cumulative density function

(cdf) will be denoted by F (x;θ).

6. The joint density (or Likelihood Function [LF]) of an arbitrary (n× 1)

random vector x, possibly depending on vector of unknown parameters

θ, is to be denoted by Ln(x;θ). The logarithm of the LF will be

denoted by `n(x;θ).

7. An estimator for a (k × 1) vector of unknown parameters θ will be

denoted either by θ̂ or θ̃. If we want to emphasize the fact that the

estimator was obtained from a sample of size, say, n we then write θ̂n

or θ̃n.

2.2 Basic Results

A number of useful, and repeatedly used, results are summarized in this

section. We mainly use definitions, propositions and examples to set forth

these results. The reader is assumed thouroughly familiar with basic statistics

for one random variable as well as with the univariate normal distribution.
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Definition 25. Let Ω denote the collection of all possible outcomes of

an experiment of chance (e.g. tossing a coin). We call Ω the sample space

and we call the individual outcomes in Ω, say ω ∈ Ω the elementary events.

In the coin tossing example we have that Ω = {Heads, Tails}.

Definition 26. A random variable x(ω) is a (random) function defined

on a sample space Ω and taking values on a subset R of the real line R ⊆ R.

We write x(ω) : Ω → R ⊆ R. We usually write x instead of x(ω), the

dependence on some sample space being assumed implicitly. If the elements

of R are countable then we say that x is a discrete random variable; if the

elements of R are uncountable then we say that x is a continuous random

variable. In our discussion we will focus almost exclusively in continuous

random variables.

Definition 27. A (k×1) random vector x(ω) is a correspondence defined

on a sample space Ω and taking values on a subset of the k-dimensional

Euclidean space R ⊆ Rk. We write x(ω) : Ω → R ⊆ Rk. We usually write

x instead of x(ω), the dependence on some sample space being assumed

implicitly. Equivalently, x can be thought of as a collection of k random

variables.

Definition 28. The probability density function (pdf) of a continu-

ous random variable x, denoted by f(x;θ) with θ being a (k × 1) vector

of unknown parameters, is a function defined on the range of values R of

the random variable and taking values in the unit interval [0, 1]. We write
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f(x;θ) : R → [0, 1]. The pdf has the following properties:

f(x;θ) ≥ 0 ∀x ∈ R∫
R f(x;θ)dx = 1

Prob(a ≤ x ≤ b)
def
=

∫ b

a

f(x;θ)dx ∀a, b ∈ R

(2.1)

Definition 29. The cumulative density function (cdf) of a continu-

ous random variable x, denoted by F (x;θ) with θ being a (k × 1) vector

of unknown parameters, is a function defined on the range of values R of

the random variable and taking values in the unit interval [0, 1]. We write

F (x;θ) : R → [0, 1]. The cdf is defined as:

F (z;θ)
def
=

∫
x∈R : x≤z

f(x;θ)dx = Prob(x ≤ z) (2.2)

Definition 30. The pth quantile of the values of a random variable x,

with cdf F (x;θ), is defined as that value xp that satisfies F (xp;θ)
def
= p, for

some probability p ∈ [0, 1]. The 50% quantile is called the median of the

values of the random variable. For every symmetric distribution we have

that x0.5 = E [x], i.e. the mean equals the median.

Definition 31. The mean (or expected value) of a continuous random

variable x, denoted by E [x;θ] with θ being a (k × 1) vector of unknown

parameters, is a constant (perhaps a function of the elements of θ) defined

as E [x;θ]
def
=

∫
R
xf(x;θ)dx. Thus, the expected value of a random variable is

a weighted average of all the values of the random variable with the weights

being given by the pdf of x. The mean measures the central tendency of the

values of x and is considered a measure of location for the underlying pdf.
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Definition 32. The jth moment of a random variable x (j = 1, 2, 3, . . . ),

denoted by Mj [x;θ] with θ being a (k × 1) vector of unknown parameters,

is defined as the expected value of the xj, that is Mj [x;θ]
def
= E

[
xj;θ

]
=∫

R
xjf(x;θ)dx. Thus, the mean of a random variable is the first moment.

Definition 33. Let x be a continuous random variable such that its

mean exists. Define the continuous random variable y
def
= x− E [x;θ]. Then,

the jth moment of x around the mean (j = 1, 2, 3, . . . ), denoted by Dj [x;θ]

with θ being a (k × 1) vector of unknown parameters, is defined as the

expected value of the yj, that is Dj [x;θ]
def
= E

[
yj;θ

]
=

∫
R
yjf(x;θ)dx. The

second moment around the mean is called the variance of x and its denoted

by Var [x;θ]
def
= D2 [x;θ]. The variance measures the dispersion of values of x

around their mean and, consequently, is considered a measure of dispersion

of the underlying pdf. The square root of the variance is called the standard

deviation.

Definition 34. Let x be a continuous random variable with mean

µ
def
= E [x;θ] and variance σ2 def

= Var [x;θ], where both µ and σ2 are ele-

ments (or functions of the elements) of θ. Then, the skewness coefficient of

x is defined as S def
= D3 [x;θ] /σ3 and the kurtosis coefficient of x is defined

as K def
= D4 [x;θ] /σ4. The skewness coefficient measures the symmetry of

the underlying pdf around µ and equals zero if the pdf is symmetric. The

kurtosis coefficient measures the thickness of the tails of the pdf and equals

3 for the standard normal distribution. We usually define K − 3 to be the

degree of excees kurtosis, with respect to the standard normal distribution.

Definition 35. Let y and x be two continuous random variables with

15



joint pdf given by f(y, x;θ), where θ is a (k × 1) vector of unknown param-

eters, and let h(x;θ) =

∫
R
f(y, x;θ)dy be the marginal pdf of x. Then, the

conditional pdf of y given x = x∗, denoted by f(y|x∗;θ), is given by:

f(y|x∗;θ)
def
=
f(y, x∗;θ)

h(x∗;θ)
(2.3)

The conditional mean or conditional expectation of y given x = x∗, denoted

by E [y|x∗;θ], is given by:

E [y|x∗;θ]
def
=

∫
R
yf(y|x∗;θ)dy (2.4)

Note that since x changes values in repeated sampling, according to h(x;θ),

we must have that the conditional expectation is a random variable with

pdf given by h(x;θ) (since a random variable is a function, the conditional

expectation is also called the regression function). If we write the condi-

tional expectation without indicating a particular value for x, like E [y|x∗;θ],

we have the conditional expectation taking different values given a different

values of x. From this observation we obtain the important law of iterated

expectations, which we state in the following proposition. [NOTE: this def-

inition remains essentially unchanged if instead of a random variable x we

have a random vector x.]

Proposition 10. Let y and x be two continuous random variables with

joint pdf given by f(y, x;θ) where θ is a (k×1) vector of unknown parameters.

Denote by Gx the collection of all possible combinations of values of x (σ-

algebra) and let h(x;θ) be the marginal pdf of x. Also, let E [y|x;θ] denote

the conditional expectation of y given x. Then, the unconditional expectation
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of y, E [y;θ], is given by:

E [y;θ]
def
= E [E [y|x;θ] |Gx] =

∫
R

E(y|x;θ)h(x;θ)dx (2.5)

[NOTE: this proposition remains essentially unchanged if instead of a random

variable x we have a random vector x.]

Definition 35. Let y and x be two continuous random variable with

means µy and µx and variances σ2
y and σ2

x respectively. Then, their co-

variance is defined as the expected value of the first cross-moment around

the means σyx
def
= Cov [y, x] = E [(y − µy)(x− µx)]. Their correlation is de-

fined as the ratio of the covariance to the product of the standard deviations

ρyx
def
= Corr [y, x] = σyx/(σy · σx).

Definition 36. Let x be an (n × 1) random vector with elements xi

that are independent and identically distributed random variabels drawn

from some underlying pdf f(xi;θ), where θ is a (k × 1) vector of unknown

parameters. Then, the joint pdf of all n elements of the random vector is

called the likelihood function (LF) and equals the product of the individual

pdf. We have:

Ln(x;θ)
def
=

n∏
i=1

f(xi;θ) (2.6)

Definition 37. Let x be an (n × 1) random vector whose individual

elements have means µi
def
= E [xi;θ] with θ being a (k× 1) vector of unknown
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parameters and i = 1, 2, . . . , n. Then, the mean vector µ is defined as:

µ
def
=


µ1

µ2

...

µn

 (2.7)

Definition 38. Let x be an (n×1) random vector with mean µ
def
= E [x].

Then, its (n× n) variance-covariance matrix Σ is given by:

Σ
def
= Cov [x] = E

[
(x− µ) (x− µ)>

]
(2.8)

The variances of the individual elements of x are given in the diagonal of Σ,

that is σii
def
= Var [xi]. The pairwise covariances are given by the off-diagonal

elements of Σ, that is σij
def
= Cov [xi, xj], for i 6= j and for i, j = 1, 2, . . . , n.

Proposition 11. Let x be an (n×1) random vector with elements xi that

are independent and identically distributed random variables drawn from a

standard normal distribution, i.e. xi ∼ N [0, 1] for all i = 1, 2, ..., n. Remem-

ber that the standard normal pdf is given by f(xi) = 1/
√

2π exp(−x2
i /2).

We then say that x follows a multivariate standard normal distribution with

mean vector E [x] = 0 and variance-covariance matrix Cov [x] = I, and we

write x ∼ N [0, I]. The LF of x can then be obtained using the previous

definition as:

Ln(x)
def
=

∏n
i=1

1√
2π

exp(−x2
i /2)

=
(

1√
2π

)n
exp

(
−1

2

∑n
i=1 x

2
i

)
=

(
1√
2π

)n
exp

(
−1

2
‖x‖2

) (2.9)

The logarithm of the above LF is given by:

`n(x)
def
= −n

2
ln(2π)− 1

2
‖x‖2 (2.10)
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Proposition 12. Let x be an (n × 1) random vector that follows a

multivariate standard normal distribution, x ∼ N [0, I]. Let µ be an (n ×

1) vector of constants and let A be a positive definite, (n × n) matrix of

constants. Define the (n × 1) random vector y = Ax + µ. Then, y follows

a multivariate normal distribution with mean vector E [y] = µ and variance-

covariance matrix Cov [y] = AA>
def
= Σ, and we write y ∼ N [µ,Σ]. Note

that Σ is a symmetric matrix.

To show these first note that E [y] = AE [x] + µ = µ, since E [x] = 0.

Then, note that Cov [y] = E
[
(y − µ)(y − µ)>

]
= AE

[
xx>

]
A> = AA>,

since Cov [x] = I.

Definition 39. Let x be an (n × 1) random vector that follows a mul-

tivariate normal distribution, x ∼ N [µ,Σ]. The logarithm of the LF of the

elements of x is given by:

`n(x;µ,Σ) = −n
2

ln(2π)− 1

2
ln |Σ| − 1

2
(y − µ)>Σ−1 (y − µ) (2.11)

Proposition 13. Let x be an (n × 1) random vector that follows a

multivariate normal distribution x ∼ N [µ,Σ]. LetA be an arbitrary (m×n)

matrix of constants and define the (m× 1) random vector y
def
= Ax. Then y

is also normally distributed as y ∼ N
[
Aµ,AΣA>

]
.

Proposition 14. Let y be an (n × 1) random vector that follows a

multivariate normal distribution y ∼ N [µ,Σ]. Define the vector x
def
=

Σ−1/2(y − µ). Then, x follows a multivariate standard normal distribution

x ∼ N [0, I].

Proposition 15. Let z be an (n× 1) random vector that follows a mul-
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tivariate normal distribution z ∼ N [µ,Σ]. Split z into two components, a

scalar component y
def
= z1 and an (n−1×1) component x

def
= [z2, z3, . . . , zn−1]

>.

Partition µ and Σ conformably as:

µ
def
=

 µy

µx

 , Σ
def
=

 σ2
y σ>xy

σxy Σxx

 (2.12)

and note that σxy is (n − 1 × 1) and Σxx is (n − 1 × n − 1). Define the re-

gression coefficient vector β
def
= Σ−1

xxσxy (note that β is a constant vector [i.e.

not random] since it depends exclusively on the variance-covaraince parame-

ters). Then, the conditional distribution of y given x is (univariate) normal

with conditional mean E [y|x;µy,µx,β]
def
= µy + (x− µx)>β and conditional

variance Var
[
y|x;σ2

y,σxy,β
] def

= σ2
y − σ>xyβ.

This proposition allows us to express any element of a normal random

vector as a linear function of the remaining elements. This is so since we can

always define a random variable u
def
= y − E [y|x;µy,µx,β], with conditional

mean zero, so that we can express y as a linear regression of the form:

y = µy + (x− µx)>β + u (2.13)

Definition 40. Let x be an (n× 1) random vector that follows a multi-

variate standard normal distribution. Then, χ
def
= 〈x,x〉 = ‖x‖2 ∼ χ2

(n), that

is, the scalar random variable χ (that equals the sum of squares of the xi’s)

follows a chi-squared distribution with n degrees of freedom.

Proposition 16. Let y be an (n × 1) random vector that follows a

multivariate normal distribution y ∼ N [µ,Σ]. Define x
def
= Σ−1/2(y − µ) ∼

N [0, I]. Then, the scalar random variable χ
def
= 〈x,x〉 = ‖x‖2 ∼ χ2

(n).
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Definition 41. Let Let θ̂n be an estimator of the (k × 1) vector of

unknown parameters θ. We define the mean-squared error (MSE) matrix of

the estimator as MSE
[
θ̂n

]
def
= E

[(
θ̂n − θ

)(
θ̂n − θ

)>]
.

Definition 42. Let θ̂n be an estimator of the (k× 1) vector of unknown

parameters θ. We say that θ̂n is an unbiased estimator if E
[
θ̂n

]
= θ. If the

estimator is not unbiased we define b
[
θ̂n

]
def
= E

[
θ̂n

]
−θ to be the bias of the

estimator.

Proposition 17. Let Let θ̂n be an estimator of the (k × 1) vector of

unknown parameters θ. It can be shown that the MSE matrix of θ̂n is equal

to MSE
[
θ̂n

]
def
= Cov

[
θ̂n

]
+ b

[
θ̂n

]
b
[
θ̂n

]>
.

Proposition 18. Let Let θ̂n be an estimator of the (k × 1) vector of

unknown parameters θ. We say that θ̂n converges in quadratic mean to θ if

limn→∞MSE
[
θ̂n

]
= 0.

Definition 43. Let Let θ̂n be an estimator of the (k × 1) vector of

unknown parameters θ. We say that θ̂n is a consistent estimator for θ if

θ̂n converges in quadratic mean. Note that, from the definition of the MSE

matrix, a necessary and sufficient condition for consistency for an unbiased

estimator is that limn→∞ Cov
[
θ̂n

]
= 0.

Definition 44. Let Let θ̂n and θ̃n be two unbiased estimators of the

(k×1) vector of unknown parameters θ. We say that θ̂n is relatively efficient

with respect to θ̃n if the matrix C
def
= Cov

[
θ̃n

]
− Cov

[
θ̂n

]
is positive semi-

definite, i.e. C ≥ 0.

Definition 45. Let {xi}ni=1 be a random sample of size n for the (k× 1)
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random vector x, drawn from some underlying joint pdf with common mean

vector E [xi] = µ and common variance-covariance matrix Cov [xi] = Σ. The

sample mean vector µ̂n is defined as µ̂n = n−1

n∑
i=1

xi. The sample variance-

covariance matrix Σ̂n is defined as Σ̂n = n−1

n∑
i=1

(xi − µ̂n) (xi − µ̂n)>. Let

V̂ n be a diagonal matrix having the sample variances on its main diagonal

(i.e. the elements σ̂ii of the diagonal of Σ̂n). Then, the sample correlation

matrix is defined as R̂n = V̂
−1/2

n Σ̂nV̂
−1/2

n .

Definition 46. Let {xi}ni=1 be a random sample of size n for the (k× 1)

random vector x, following a multivariate normal distribution xi ∼ N [µ,Σ].

Then, the logarithm of the LF of the sample observations is given by:

`n(x;µ,Σ) = −nk
2

ln(2π)− n

2
|Σ| − 1

2

n∑
i=1

(xi − µ)>Σ−1 (xi − µ) (2.14)

Proposition 19. Let {xi}ni=1 be a random sample of size n for the ran-

dom vector x, drawn from a multivariate normal distribution xi ∼ N [µ,Σ].

Then, the maximum likelihood (ML) estimators for µ and Σ are given by

the sample mean µ̂n and the sample variance-covariance matrix Σ̂n, as de-

fined before. Note that the ML estimators are obtained by maximizing the

logarithm of the LF given in the previous equation.

Definition 47. Let {xi}ni=1 be a random sample of size n for the random

variable x, drawn from some underlying pdf with common mean E [xi]
def
= µ.

Then, we define the jth sample moments about the origin and about the

mean as:

m̂j
def
= n−1

∑n
i=1 x

j
i

d̂j
def
= n−1

∑n
i=1(xi − m̂1)

j
(2.15)
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Proposition 20. Let {xi}ni=1 be a random sample of size n for the

random variable x, drawn from some underlying normal distribution xi ∼

N
[
µ, σ2

]
. Denote the sample standard deviation by s

def
=

√
d̂2 and consider

the sample skewness Ŝn
def
= d̂3/s

3 and sample kurtosis coefficients K̂n
def
= d̂4/s

4.

It can then be shown that the sampling distributions of Ŝn and K̂n are given

by:

Ŝn ∼ N
[
0,

6

n

]
K̂n ∼ N

[
3,

24

n

]
(2.16)

Proposition 21. Let {xi}ni=1 be a random sample of size n for the

random variable x, drawn from some underlying normal distribution xi ∼

N
[
µ, σ2

]
. Denote the sample standard deviation by s

def
=

√
d̂2, the sample

median by x̃0.5 and denote by Q̂1 and Q̂3 the sample quartiles (where Q1
def
=

Φ−1(0.25) and Q3
def
= Φ−1(0.75) are the 25% and 75% quartiles of the normal

distribution with cdf denoted by Φ(·)). Then, an estimator for the dispersion

of the sample observations around their sample median is given by the ratio of

the inter-quartile range IQR
def
= Q̂3− Q̂1 over 1.34. We denote this estimator

by d
def
= IQR/1.34.

2.3 Data Transformations to Near Normality

If the sample observations do not appear to be drawn from some underlying

normal distribution one may try to appropriately transform them so that

they near normality. A class of data transformations that is frequently used

for this purpose is that of power transformations, also known as Box-Cox

transformations. Assume that you have a random sample of n observations

for the random variable x, that is {xi}ni=1. For every sample observation
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xi consider the transformation to yi(λ), given the non-negative parameter

λ ≥ 0, as:

xi → yi(λ)
def
=

 (xλi − 1)/λ for xi > 0 and λ 6= 0

ln(xi) for xi > 0 and λ = 0

 (2.17)

While the transformation parameter λ can be set to some arbitrary value,

one that transforms the data so as to near normality, we can actually estimate

λ from the sample observations using the method of maximum likelihood

(ML). It can be shown that the log-likelihood function (the log of the joint

pdf) of the transformed observations yi(λ) is given by:

`n(xn;λ)
def
= −1

2
n ln

{
1

n

n∑
i=1

[yi(λ)− ȳ(λ)]2

}
+ (λ− 1)

n∑
i=1

lnxi (2.18)

where xn
def
= {xi}ni=1 and ȳ(λ) denotes the sample mean of the transformed

observations. Maximizing `n(xn;λ) with respect to λ gives us the maximum

likelihood estimator (MLE) λ̂n. Note that the likelihood function is non-

linear in λ and therefore we cannot obtain a closed-form expression for the

MLE. However, we can employ a simple search procedure, over a grid of

possible values for λ, and select that value that maximizes the likelihood

function.1

A formal hypothesis test for the null hypothesisH0 : λ = 0, corresponding

to a logarithmic transformation of the data, can be based on the likelihood

ratio principle. It can be shown that 2(LUn − LRn ) ∼ χ2
(1), where LUn

def
=

`n(xn; λ̂n) denotes the (unrestricted) maximum value of the log-likelihood

1This can be easily accomplished in a spreadsheet program and, of course, with any

programming language.
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function under the estimated λ̂n and LRn
def
= `n(xn; 0) denotes the (restricted)

maximum value of the log-likelihood function under the null value of λ = 0.

2.4 Exercises

1. Propose estimators for the median x0.5 and the quartiles Q1
def
= x0.25

and Q3
def
= x0.75.

2. Is the mean of a positively skewed distribution larger or smaller than

its median?

3. Show that for a normal distribution N [µ, σ2] we have that following

holds: σ ≈ IQR/1.34.

4. Let {xi}ni=1 be a sample of observations for the random variable x drawn

from some underlying pdf f(xi;θ) with common mean E [xi] = µ and

common variance Var [xi] = σ2. (a) Show that the univariate sample

mean m̂1 is an unbiased and consistent estimator of the true mean µ; (b)

Show that d̂2 is biased but that [n/(n− 1)]d̂2 is an unbiased estimator

for σ2.

5. Let {xi}ni=1 be a random sample of size n for the (k×1) random vector

x, drawn from some underlying joint pdf with common mean vector

E [xi] = µ and common variance-covariance matrix Cov [xi] = Σ. Show

that the multivariate sample mean µ̂n is an unbiased and consistent

estimator of the true mean µ.

6. Construct t-type tests for zero skewness and zero excess kurtosis.
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