

Department of Computer & Communication Engineering

Program of Graduate Studies
«Computer & Communication Science and Technology»

Spring Semester

Embedded Systems
- Teachning notes -

Labros Bisdounis, Ph.D.

Volos 2006

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 1

• F. Vahid, T. Givargis, "Embedded system design: A unified hardware-

software introduction", Wiley, 2002.

• W. Wolf, "Computers as components: Principles of embedded computer

systems design", Morgan Kaufmann, 2001.

• P. Marwedel, "Embedded systems design", Kluwer Academic, 2006.

• T. Noergaard, "Embedded systems architecture: A comprehensive guide

for engineers and programmers", Elsevier, 2005.

• S. Heath, "Embedded systems design", Elsevier, 2002.

• J. Hennessy, D. Patterson, "Computer organization and design", Elsevier,

2003 (μετάφραση: Οργάνωση και σχεδίαση υπολογιστών, Εκδόσεις

Κλειδάριθμος).

• C. Hammacher, Z. Vranesic, S. Zaky, “Computer organization", McGraw

Hill, 2002 (μετάφραση: Οργάνωση και αρχιτεκτονική ηλεκτρονικών

υπολογιστών, Εκδόσεις Επίκεντρο).

Selected books

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 2

• S. Furber, "ARM system-on-chip architecture", Addison-Wesley, 2000.

• A. Jerraya, W. Wolf, "Multiprocessor systems-on-chips", Morgan

Kaufmann, 2004.

• M. Keating, P. Bricaud, "Reuse methodology manual for system-on-a-

chip designs", Kluwer Academic, 2002.

• N. Voros, K. Masselos, "System-level design of reconfigurable systems-

on-chips", Springer, 2005.

• W. Chen, "The VLSI handbook", CRC Press, 2000.

Selected books (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 3

• Introduction to embedded systems.

• Specification and modeling of embedded systems.

• Embedded systems design flows.

• Embedded systems synthesis (system-level synthesis, hardware

synthesis, software generation) and estimation.

• Power optimization in embedded systems.

• Verification and co-simulation of embedded systems.

• Reduced Instruction Set Computing (RISC) machines.

• The ARM processor.

• Application Specific Instruction-set Processors (ASIP) design.

• Very Large Instruction Word (VLIW) processors.

• System-on-chip design and prototyping platforms.

• Reconfigurable systems.

• Communication in embedded systems.

Contents of the course

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 4

Department of Computer and Communication Engineering

1. Introduction to Embedded Systems

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 5

• The heterogeneity of today’s embedded systems faces developers
and engineers with new problems when it comes to specifying,

simulating, designing and optimising such complex systems.

• Implementations are typically comprised of programmable
components, dedicated hardware components, communication

and memory subsystems.

• The design of embedded systems is driven by cost vs. performance

trade-offs. The optimization involves the simultaneous consideration

of several incomparable and often competing objectives, such as
cost, power consumption, reliability etc.

• As a consequence, much effort and automated design tools are
necessary in order to handle the complexity of today’s embedded

systems, and find the trade-off which is the most suitable for the

market requirements.

Basic idea

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 6

• An embedded system is any device which includes a

programmable component but itself is not intended to
be a general-purpose computer.

• An embedded system:

 is a collection of programmable components

surrounded by application-specific hardware
components and other peripherals.

 and interacts continuously with its environment
through sensors (with the general meaning).

What is an embedded system ?

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 7

• Dedicated and application-specific

(not general purpose).

• Contains at least one

programmable component.

• Interacts continuously with the

environment.

• It is real-time: must meet external

timing constraints (deadlines).

• Must meet other constraints:

power consumption, physical

constraints, cost, reliability, safety.

Present and future of computing !

Main characteristics of an embedded system

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 8

• Digital components: processors, memories, controllers,

buses, application specific circuits, peripherals (interface

circuits).

• Embedded software.

• Analog components: sensors, actuators.

• Converters: A/D and D/A.

Components of an embedded system

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 9

Analog

Example: Digital camera

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 10

• Embedded software: software running on embedded processors:

 Application programs.

 Real-time operating system.

 Peripheral’s drivers.

• Digital (hardware) components:

 Programmable processors.

 Dedicated hardware implementing critical and demanding tasks

or tasks that are not suitable for software implementation.

 Reconfigurable hardware (e.g. FPGAs).

Embedded software and digital components

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 11

• Processing:

 Used to transform data.

 Implemented using programmable processors and custom hardware.

• Storage:

 Used to maintain data.

 Implemented using memory modules.

• Communication:

 Used to transfer data between processors, custom hardware blocks,

peripherals and memories within a system.

 Implemented using buses in most cases.

• Peripherals (interfaces) and controllers.

Computing elements in embedded systems

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 12

• Need for energy, code size and run time efficiency.

• In general, a processor is the device that runs a number of

algorithms and contains control and datapath units.

• General purpose processors (GP):

 Perform a variety of computational tasks.

 Flexibility and low cost.

 Slow and power hungry.

• Application-specific processors (ASIPs):

 Tuned for application domain, but programmable.

 Fast and power efficient (compared to GP).

• Application-specific circuits (ASICs):

 Customized hardware components for specific task.

 Fast, power efficient, minimal area.

 Inflexibility and high cost.

Processors in embedded systems

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 13

• Programmable devices used in
a variety of applications.

• Contain program memory,

general datapath with large
register file and general ALU.

• Low time-to-market and
NRE (non-recurring cost).

• High flexibility.

General-purpose processors

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 14

ARM10

core processor
AMD Athlon 64

core processor

P LL

General-purpose processor examples

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 15

• Programmable devices optimized

for a particular application or

family of applications having

common characteristics.

• Contain program memory,

optimized datapath and specific

functional units.

• Use specific instruction set.

• High performance, small size and

low power consumption.

• Usually they exhibit small

flexibility.

• DSP, VLIW, network processors,

etc.

Application-specific processors (ASIPs)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 16

Bus

Logic

Branch

Unit

• VLIW architecture (instruction-level parallelism fixed at compile-time) that

contains a specialized floating-point unit for graphics applications.

ASIP example: Transmeta Crusoe processor

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 17

• Digital circuits designed to

implement exactly one algorithm

(application or part of application).

• Custom-designed circuits that are

necessary if ultimate speed or

energy efficiency is the goal

(known as coprocessors or

hardware accelerators).

• Contain only the components

needed for the execution of a

specific algorithm (no program

memory is needed).

• Fast, low power consumption,

small size, high cost for low

volume.

Application-specific circuits

Application-

oriented

datapath

Audio

processing

ASIC

D
a

ta
 /
 c

o
n

tr
o

l

lo
g

ic

M
e

m
o

ry

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 18

• Prefabricated digital devices that can

be purchased and programmed by the

designer/user.

• Programmable arrays of generic logic

modules, programmed by the

designer/user and not by the

semiconductor foundry.

• PLDs, FPGAs.

• Alternative to ASICs with low NRE

cost, and fast availability.

• Penalty on area, performance and

power consumption.

Programmable devices

Xilinx

FPGA

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 19

• Memory is used in embedded systems for storage purposes

and offers access capabilities (read and/or write).

• Main characteristics:

 Storage permanence: ability of memory to hold stored bits

after they are written.

 Write ability: manner and speed a memory can be written.

• There are many different types of memories:

 SRAM, DRAM.

 ROM, PROM.

 EPROM, EEPROM, Flash.

 NVRAM.

Memory in embedded systems

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 20

• SRAM, DRAM:

 Processor writes to memory simply and fast.

 Holds bits as long as power supplied to memory (DRAM begin to

lose bits almost immediately after written – refreshing is needed).

 SRAM is more expensive, faster (access time 10ns vs 60ns) and

more reliable than DRAM

• ROM, PROM:

 Once data has been written onto a ROM it cannot be removed

and can only be read (mask programmed: data are written during

fabrication).

 Never loses its data.

 PROM is a variation of ROM manufactured as blank memory

on which data can be written with a special device (programmer).

Memory in embedded systems (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 21

• EPROM:

 Retains contents until it is exposed to ultraviolet light. The light clears

the contents, making possible to reprogram the memory.

 To write the memory, a special device (programmer) is needed.

• EEPROM, Flash:

 EEPROM is a special type of PROM that can be erased by exposing it

to an electrical charge.

 Retains its contents even when the power is turned off.

 Processor can write to memory, but slower than RAM.

 The principal difference between EEPROM and Flash is that

EEPROM requires data to be written or erased one byte at a time

whereas Flash allows data to be written or erased in blocks (faster).

• NVRAM:

 Retains contents when power is turned off. It is an SRAM that is made

non-volatile through a connection with a power source (battery).

 Often it is a combination of SRAM and EEPROM.

Memory in embedded systems (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 22

Memory in embedded systems (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 23

• Communication in an embedded system accounts for the transfer of

data between processors, custom hardware blocks, peripherals and

memories.

• Implemented using buses.

• Example: Common forms of communication are when a processor

read or writes a memory or when a processor reads or writes a

peripheral’s register.

• Connectivity schemes:

 Serial communication (USB, RS232 etc.): use single wire, high

throughput for long distance communication, low cost).

 Parallel communication (PCI, AMBA etc.): use multiple wires,

high throughput for short distance communication, high cost).

 Wireless communication (Infrared, RF).

• Each connectivity scheme has an associated protocol describing the

rules for transferring data over it.

Communication in embedded systems

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 24

• The main issues regarding the communication of a processor with

the peripherals through a system bus are:

 The addressing procedure: how the system address map is

used in order the processor to communicate with the memory

and the peripherals.

 The interrupt-driven communication: the processor accepts

interrupt signals in order to read and process data from a

peripheral.

 The direct memory access (DMA) for transferring data between

memories and peripherals, without going through the processor.

 Arbitration: how to handle simultaneous servicing requests of

peripherals.

Communication in embedded systems (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 25

• Peripherals and controllers perform specific computation tasks.

• Custom single-purpose processing blocks:

 Designed by us for a unique task.

 Predesigned (by others) for a common task.

• Examples:

 Timers, counters: to measure timed events or indicate that a maximum

count reached.

 UART: universal asynchronous receiver transmitter that takes parallel

data and transmits serially, receives serial data and converts to

parallel.

 LCD interface: interface the system to a liquid crystal display.

 External memory controller, PCI controller, USB interface, Ethernet or

other network type interface.

Peripherals and controllers in embedded systems

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 26

INFORMATION
PROCESSING

A/D
CONVERTER

D/A
CONVERTER

SENSOR ACTUATOR
ENVIRONMENT

Converters in embedded systems

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 27

Converters in embedded systems (cont’d)

Main issues:

• Sampling: how often is the signal converted.

• Quantization: how many bits used to represent a sample.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 28

Microphone Megaphone

Laser diode,
transistor Antenna

AccelerometerDC motor

• Sensors

 Capture physical stimulus (heat,

light, sound, pressure, magnetism,

mechanical motion).

 Typically, they generate a

proportional electrical current.

• Actuators

 Convert a command to a physical

stimulus (heat, light, sound,

pressure, magnetism, mechanical

motion).

Analog components in embedded systems

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 29

• Sensors can be designed for virtually every physical stimulus. Firstly, they capture

the physical data and then they process them.

• Many physical effects are used for constructing sensors: generation of voltages in

an electric field (law of induction), light-electric effect etc.

• Examples: heart monitoring sensors, car sensors (rain sensors for wiper control,

proximity sensors), pressure sensors (touch pads and screens), audio sensors,

motion sensors, thermal sensors (SARS detection through high fever) etc.

• Actuators produce output physical stimulus for various environments: motor control

actuators (industrial applications), optical actuators (IR), thermal actuators, MEMS

devices (Micro-Electro-Mechanical Systems) etc.

• MEMS technology regards the integration of mechanical elements and electronics

on a common silicon substrate. The electronics are fabricated using silicon processes,

and the micromechanical components are fabricated using micromachining processes

that selectively etch away parts of the silicon wafer or add new structural layers to

form the mechanical devices.

• Applications: biotechnology (DNA identification), communications (RF-MEMS),

accelerometers (air-bags).

Sensors and actuators in embedded systems

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 30

• Automotive electronics (airbag control,

dashboard info, ABS, consumption

control etc.).

• Aircraft electronics (guidance, flight

control, air quality control, pressure

control etc.).

• Telecommunication systems (mobile

phones and network cards, mobile base

stations etc.).

• Medical systems (diagnostic and

monitoring systems, radiation systems).

• Defence systems (radars and safety

communication systems, navigation

systems like GPS etc.).

• Consumer multimedia electronics

(cameras, game machines etc.).

• Industrial process control systems.

• Robotics (electro-mechanical systems).

Embedded applications

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 31

• Mobile phone:

 Multiprocessor system (8-32 bit
processor for user interface, DSP,
32-bit processor for IR and Bluetooth
ports)

 8-100 MB memory, custom chips,
integrated camera, megaphone,
speaker etc.

• Smart beer glass:

 Combines a fluid-level sensor with
a simple 8-bit processor and an RF
system with internal antenna. The
system checks the fluid level & alerts
the servers when close to empty.

 Integrates several technologies such as:
radio transmission, sensor engineering,
computer monitoring.

Embedded applications in every-day life

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 32

• Lego mindstorms robotics kit: combines
an 8- bit controller with 64 kB memory.

• Electronic circuits to interface the
processor with the various sensors and
motors.

• Good way to start learning embedded
systems…

Embedded applications for kids

Control unit

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 33

• 53 8-bit, 11 32-bit and 7 16-bit
microprocessors (71 in total!).

• Multiple networks.

• Sensors and actuators distributed all
over the vehicle.

• Windows CE operating system.

• Engine management: consumption,
ignition, emission control etc.

• Instrumentation: data acquisition,
display and processing.

• Safety and stability: airbags, ABS (anti-
lock braking system), ESP (electronic
stability control), efficient and automatic
gearboxes etc.

• Entertainment and comfort: Radio-CD,
A/C, television, GPS etc.

BMW 745i

Embedded applications for lotto winners

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 34

• Reactivity requirement.

• Timing constraints.

• Power dissipation constraints.

• Size and weight constraints.

• Cost constraints.

• Safety and security constraints.

• Reliability constraints.

• Time-to-market constraints.

Constraints of embedded applications

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 35

• Reactivity requirement: embedded systems are in

continual interaction with its physical environment

through sensors and actuators, and execute at a

rate determined by the environment.

• Timing constraints:

 Most of the embedded systems have to perform in real-

time which means that if data is not ready by a certain

deadline (i.e. reaction of the system within a certain time

interval dictated by the environment), the system fails.

 A real-time constraint (deadline) is called hard, if not

meeting that constraint could result in a failed operation

of the system. All other time-constraints are called soft

(if not meeting, the operation of the system will be

degraded, but the system will not fail).

 Embedded & real-time terms are almost synonymous.

 Most embedded systems are real-time and most real-

time systems are embedded.

EmbeddedEmbedded

RealReal--timetime

Embedded Embedded

RealReal--timetime

Reactivity and timing constraints

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 36

• Power consumption constraints:

 High power dissipation needs strong power supply and

expensive cooling system.

 High power consumption leads to short battery life time

(very critical issue in mobile/portable applications).

• Size and weight constraints:

 Critical for mobile, portable devices (e.g. PDAs, mobile

phones, cameras).

 Very critical for specific medical applications (e.g. pills

with integrated camera and data acquisition system).

11 x 26 mm

Power, size and weight constraints

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 37

• Cost constraints: embedded systems are very often

mass products in highly competitive markets and have

to be shipped at a low cost (e.g. mobile phones market).

• We are mainly interesting in manufacturing cost and

design cost.

• Main cost factors: design time and effort, type of used

components (processors, memory, I/Os), technology

(board-based, system-on-chip, type of manufacturing

processes), testing time, power consumption.

• Non-recurring engineering (NRE) costs (design cost

and prototypes development) are becoming very high,

and because of that:

 It is difficult to come out with low quantity products.

 Hardware and software platforms are introduced, which

are used for products of similar type.

Cost constraints

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 38

• Reliability constraints:

 Reliability is the probability of an embedded system working

correctly provided that it was working at t = 0.

 Even perfectly designed systems can fail if the operation

assumptions (workload, possible errors) turn out to be wrong.

So, we have to be very carefully when define the operation

assumptions for a specific application in a given environment.

• Safety constraints: embedded systems are often used in life
critical applications (automotive electronics, nuclear plants,
medical applications, defence applications etc.).

• Security constraints: embedded systems for communication
applications must often support confidentiality and authenticity.

• In order to guarantee the above constraints during the design,
exhaustive verification of the certain properties of the designed
system must be performed, as well as synthesis and design
based on automatic design tools.

Reliability, safety and security constraints

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 39

• Time-to-market constraints: in highly competitive

markets, it is critical to catch the market window:

a short delay may have catastrophic financial

consequences, even if the quality of the product

is excellent.

• Development time has to be reduced and some

ways to achieve that are:

 Efficient design methodologies.

 Efficient design tools.

 Reuse of previously designed and verified parts

(hardware and software).

 Use of existing hardware-software prototyping

platforms.

 Design team understanding both software and

hardware.

Time-to-market constraints

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 40

The wall between

hardware and

software must

be torn down !

HWSW

Co-design is the concurrent design of hardware and software

components of a digital system.

Classic design

Co-design

What is hardware-software co-design ?

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 41

What is hardware-software co-design ? (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 42

• The difficulties in designing embedded systems are due to the fact that such
systems has high complexity, are dedicated towards a certain application, and
must be efficient in what concerns:

 Run-time.

 Power consumption.

 Code-size (low memory requirements).

 Cost (minimization of hardware resources).

 Development time (time to market).

 Size and weight.

• In order to achieve all the above, embedded systems have to be highly optimized.

• Both hardware and software aspects have to be considered
simultaneously (co-design) in order to achieve:

 A good solution by balancing hardware

and software resources (flexibility).

 Exploration of more design alternatives.

 Design of systems-on-chip (optimized complex systems).

Difficulties in hardware-software co-design

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 43

Specification, modeling and

functional simulation

Architecture selection

(components allocation)

Hardware

synthesis

Software

compilation

Prototyping development

and testing

System fabrication

Hardware-software
mapping and sceduling

Hardware-software

integration & co-simulation

Interface

synthesis

• Specification and modeling (co-specification,

functional co-simulation).

• High-level co-synthesis:

Architecture selection.

Components allocation

(processing elements, storing elements

and communication elements).

Tasks hardware-software mapping.

Scheduling of the several tasks.

• Low-level co-synthesis:

Hardware synthesis.

Software compilation and code

generation.

 Interface synthesis.

• Integration, simulation, prototyping,

fabrication.

• All steps are supported by CAD tools.

Hardware-software co-design flow

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 44

Computer-aided design (CAD)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 45

• For the specification the heterogeneous nature of embedded systems,

has to be taken into account.

• There are no global modeling methods, except for restricted domains:

 Dataflow models.

 Finite state machines.

 Petri nets, etc.

• Specific optimizations are often required (data flow graph, FSM

reduction etc.).

• Several specification languages (SDL, UML, Matlab, C) can be used,

based on several specification models.

• Executable co-specification for early validation of the system.

Specification and modeling

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 46

• Co-synthesis is a complex task:

 Components selection (architecture definition) and

hardware-software mapping.

 Tasks scheduling.

 Software synthesis and code generation.

 Hardware synthesis.

 Interface and communication synthesis

• Optimizations:

 With respect to the design objectives and constraints.

 Often the objects are conflicting.

• Design space exploration in order to generate alternative

implementations.

Synthesis of embedded systems

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 47

Architecture of an embedded system

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 48

Task example:

Discrete Cosine Transform

Design space exploration

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 49

Hardware-software mapping

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 50

• Speed-up the software execution:

 By migrating software functions to dedicated

hardware.

• Reduce cost of hardware implementation:

 By migrating hardware functions to software.

• Guarantee real-time constraints:

 By migrating the timing-critical portion to ASIC.

Hardware-software mapping (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 51

• The basic problem of co-simulation is how to simulate hardware and

software together so that simulation to be fast and accurate.

• The existing simulation techniques (hardware and software) have to

be extended to combine simulation of hardware and software

components.

• Different simulation platforms can be used.

• Software runs fast while hardware simulation is relatively slow. So,

the problem is how to run the system simulation as fast as possible

and keep the two domains synchronized.

• Slow models provide full details and produce accurate results while

fast models do not produce enough timing information and the

simulation is not accurate.

Hardware-software co-simulation

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 52

Conclusions

• Embedded systems are dedicated and application-specific, contains at least one
programmable component, requires continuous interaction with the environment
in real time and must meet several constraints.

• This nature of today’s embedded systems faces developers and engineers with
new problems when it comes to specifying, simulating, designing and optimising
such complex systems.

• Implementations are typically comprised of general purpose or application-
specific programmable components, dedicated processing components,
communication and memory modules.

• The design of embedded systems is driven by several constraints: performance,
power consumption, size and weight, cost, safety and security, reliability, time to
market.

• Optimization involves the simultaneous consideration of these incomparable and
often competing objectives.

• As a consequence, much design effort and advanced CAD tools are necessary
in order to handle the complexity of today’s embedded systems & applications.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 53

2. System specification and modeling

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 54

Specifications
requirements & constraints

Several design and
development steps

Implementation

Specifications in embedded systems

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 55

• Requirements and constraints: informal description of

what the customer wants.

• Specification: precise description of what design team
should deliver.

• Requirements and constraints analysis phase links the

customer with the designers.

Specifications in embedded systems (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 56

• Functional: input-output relationships.

• Non-functional:

 Timing.

 Power consumption.

 Production cost.

 Physical size, weight.

 Time-to-market.

 Safety requirements.

 Environmental aspects, reliability.

Types of specifications, requirements & constraints

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 57

Proper specifications, requirements & constraints

• Correct.

• Unambiguous.

• Complete.

• Verifiable: we will be capable to check if the specification,

requirement or constraint is satisfied in the final system.

• Consistent: specification, requirements or constraints do
not contradict each other.

• Modifiable: can be updated easily.

• Reasonable: know why each specification/constraint exists.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 58

Setting requirements and constraints

• Customer interviews.

• Comparisons with competitors.

• Feedback from sales and marketing departments.

• Experience from prototypes and similar products.

• Design a product for someone like you….

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 59

Setting specifications

• A complete specification captures non-functional requirements

(speed, power, cost, size) and the behavior of the system by

providing:

 Relation between inputs and outputs.

 Possibly internal states.

 Algorithm for the system functionality.

• The design team must have the capability to verify the correctness

of the specification and to compare the specification with the

implementation.

• Basic specification styles:

 Textual

 Graphical

 Mixed

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 60

• Specifications can be formulated in:

 Natural language (informal).

 Specification languages or models (more detailed).

• A specification language or model have to be:

 able to express the basic properties and basic aspects of the
system behavior in a clear manner.

 able to check the system requirements and to ensure the

synthesis of an efficient system implementation.

• Depending on the particularities of the system or parts of the
system, adequate languages or models have to be chosen.

• The specification language or model has to contain the appropriate
constructs (textual or graphical) in order to express the system’s

functionality and requirements.

System specifications properties

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 61

Specifications and refinement

• The design process consists of a sequence of steps:

each step performs a transformation from a more

abstract description to a more detailed one.

• A design step takes a specification (model, code etc.)
of the design at a level of abstraction and refines it to

a lower one.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 62

The designer gets a

specification (behavior

description and other
properties) as an input

and finally has to produce

an implementation, after

a sequence of refinement

steps.

From specification … to … implementation

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 63

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 64

System modeling: use of computation models

• A computation model assists the designer to understand and

describe the behavior of a system by providing a “vehicle” to

compose the system’s behavior from simpler objects

• A computation model provides a set of objects and rules for

composing those objects in order then to be able to formally

represent (model) the behavior of our system.

• A system is represented as a set of components, which can be

considered as isolated modules (often called processes or tasks),

interacting each other and with the environment.

• Usually computation models are based on some kind of graph
representation.

• The computation models define the behavior and interaction

mechanisms of the system modules.

• The computation models help the designer to formally analyse,

estimate some useful parameters, verify (at the high level) the

system by using the proper tools.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 65

System modeling: use of computation models (cont’d)

• Thus, computation models usually

refer to:

 How each module (process or

task) performs internal computation.

 How the modules transfer

information between them
(communication).

 How they are related in terms
of execution order and

synchronization.

• Some computation models do not
refer to aspects related to the internal

computation of the modules, but only

to modules interaction.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 66

• Two different approaches for ordering the execution

of tasks in computation models.

 Data-driven

 Control-driven

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 67

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 68

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 69

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 70

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 71

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 72

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 73

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 74

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 75

• Different computation models provide different

properties.

• We have to choose the right computation model for

a particular application domain.

• Computation models commonly used to describe

embedded systems:

 Dataflow models

 Finite state machines

 Petri nets

Common computation models

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 76

Common computation models (cont’d)

• Most applications are implemented by using control-

dominated and data-dominated systems.

• A control-dominated system is one whose behavior

consists mostly of monitoring control inputs and
reacting by setting control outputs.

• A data-dominated system behavior consists mostly

of transforming streams of input data into streams

of output data.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 77

• Systems are specified as directed graphs

where:

 Nodes represent computations

(processes).

 Arcs represent sequences (streams)

of data.

• Suitable for signal processing algorithms

(encoders, decoders, compressors) that

are expressed as block diagrams.

• Typical case of data-driven execution order.

• Commercial tools using dataflow models are:

COSSAP (Synopsys), DSP Station (Mentor

Graphics), Matlab.

Dataflow models

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 78

Dataflow models (cont’d)

Example showing a dataflow model of an algorithm and the resulting
implementation after synthesis using a CAD tool.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 79

Dataflow models (cont’d)

• Nodes in dataflow models may represent more complex

transformations than single arithmetic operations.

• Each node may also include an individual dataflow model.

Modulation Convolution

Fourier

transformation

A B C D

E F

Z

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 80

• The system is specified by representing its states as well as the

transitions from one state to another.

• One particular state is specified as the initial one.

• Finite number of states and transitions.

• Transitions are triggered by input events.

• Transitions generate outputs.

• FSMs are suitable for modeling control-dominated reactive systems,

i.e. react on inputs with specific outputs; with not much computation (e.g.

communication protocols). There is no possibility to specify computations.

• Commercial tools using FSMs are based on graphical programming:

Rational Rose framework (UML-based system), Telelogic SDL Suite

(SDL-based tool).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 81

Example 1: Elevator controller

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 82

#define S1 0

#define S2 1

#define S3 2

#define S4 3

{

int state = S1;

switch (state) {

case S1: if (r1) { state = S1; n = TRUE; }

if (r2) { state = S2; u1 = TRUE; }

if (r3) { state = S3; u2 = TRUE; }

break;

case S2: if (r1) { state = S1; d1 = TRUE; }

if (r2) { state = S2; n = TRUE; }

if (r3) { state = S3; u1 = TRUE; }

break;

…

Implementation in C of the elevator controller

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 83

Example 2: Car belt controller

idle

buzzer seated

belted

nse / nu

se / ton

nbe / ton

be / toff
be / boff

nbe / bon

nse / nu

nse / boff

Initial state

nse / toff

Inputs:

nse (no seat)

se (seat)

be (belt)

nbe (no belt)

Outputs:

nu (null)

toff (timer off)

ton (timer on)

bon (buzzer on)

boff (buzzer off)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 84

#define IDLE 0

#define SEATED 1

#define BELTED 2

#define BUZZER 3

{

int state = IDLE;

switch (state) {

case IDLE: if (no seat) { state = IDLE; }

if (seat) { state = SEATED; timer on = TRUE; }

break;

case SEATED: if (belt) { state = BELTED; }

if (no belt) { state = BUZZER; buzzer on = TRUE; }

if (no seat) { sate = IDLE; timer off = TRUE;}

break; …………

Implementation in C of the car belt controller

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 85

• Complex systems tend to have very large number of states. This

particularly is the case in the presence of concurrency. This is called

state explosion.

• Expressing such a system as a single FSM is very difficult.

• There are two important mechanisms that reduce the size of an

FSM model:

 Hierarchy

 Concurrency

• Using hierarchy and concurrency we only reduce the size of the graphical

model; the intrinsic complexity (the number of states of the actual system)

cannot be reduced.

• However, the difficulty of realising the model can be drastically reduced.

• In the case of use of the above two mechanisms, we refer to the model as

a hierarchical/concurrent FSM or HCFSM.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 86

• Hierarchy:

 A single state S can represent an enclosed state machine F.

 Being in state s means that state machine F is active, and then

the system is in one of the states machine F.

• Concurrency:

 Two ore more state machines are viewed as being simultaneously

active, and then the system is in one state of each parallel state

machines simultaneously.

• Another option is the program state machine (PSM) model that extends

FSMs to allow use of sequential program code in order to define a

state’s actions.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 87

• The system is specified as a sequence of directed graphs.

• There are two kinds of symbols in each graph:

 Places: they hold the distributed state of the system expressed
by the presence or absence of streams of data in the places.

 Transitions: denote the activity of the system.

• The state of the system captured by the marking of the places in

which data is present.

• A transition may fire whenever its predecessor places are marked.

• If a transition fires, it removes the data from each predecessor place

and adds a mark (data) to each successor place.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 88

Example: A producer and a consumer process communicating through a buffer,

and each process provides acknowledgment for “send” and “receive” actions.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 89

• Applications of Petri nets: distributed computing, communication networks.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 90

• A single specification language can be used for the specification of the

overall system.

• This does not mean necessarily that we have a homogeneous

specification (in terms of computation models).

• It is possible for example to specify in the same programming or HDL

language parts of the system as FSM and other parts according to

another data-flow model.

• Several languages can be used for system specification:

 Specific languages for the hardware and software parts (C and

VHDL, for example).

 Different languages can be used inside the software and hardware

domain, depending on the selected computation model.

 Without having decided on the future implementation of a part of

our system (hardware or software), different languages can be

used depending on the computation model that fits each part of

the system.

Computation models & specification languages

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 91

Multi-language specification

Subsystem 1

specification

Subsystem 2

specification

Subsystem k

specification
…

…

Subsystem 1

specification

Subsystem 2

specification

Subsystem k

specification
…

Validation Validation Validation

Unified system model

Validation

Integration
Specification
and validation
are supported

by specific tools
in both cases

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 92

• General purpose programming languages (C, C++, Java) or
hardware description languages (VHDL, Verilog, SystemC).

They do not support, by definition, a certain model of
computation.

• Synchronous languages (FSM-based): Esterel.

• Languages for description of networks of communicating
processes: UML, SDL (graphical programming).

• Data-flow languages: Silage, Matlab.

• Example: combining SystemC (for subsystems suitable for
hardware implementation) and C++ (for subsystems suitable

for software implementation) we can use a unified validation
environment.

Specification languages

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 93

Conclusions

• The design procedure can be viewed as a sequence of refinement

steps leading from specification to implementation.

• Specifications are formulated using specification languages and are

based on the used computation models.

• Specification languages and computation models are based on
specific set of rules and syntactical constructs.

• The chosen language and computation model have to contain the
appropriate rules and constructs in order to express the system’s

functionality and requirements, and to ensure efficient system
implementation.

• Different specification languages and computation models can be

used depending on the nature of each part of the system or each

application domain.

• Interesting aspects of a computation model are: execution order,
communication and synchronization.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 94

3. Detailed design flows, synthesis
and estimation of embedded systems

Department of Computer and Communication Engineering

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 95

3a. System-level synthesis of embedded systems

3b. System estimation

3c. Low-level synthesis: Hardware synthesis

3d. Low-level synthesis: Software generation

3e. Power optimization in embedded systems

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 96

3a. System-level synthesis

Labros Bisdounis, Ph.D.

Department of Computer and Communication Engineering

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 97

Simplified (traditional) design flow

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 98

Modified design flow

•

•

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 99

• Architecture selection: defines a system-level view of the architecture by

selecting a set of processing, storage & communication elements along

with the system topology.

• Mapping (partitioning): distributes the functionality captured by the

specification among the allocated system components.

• Scheduling: determines activation times and priorities for processes, so

that the constraints are satisfied.

System-level synthesis

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 100

• Architecture selection decides on the kind and number of

components used for implementation of the system, and

on their interconnection topology.

• Three types of components are allocated:

 Processing elements: microprocessors,

microcontrollers, ASIPs, ASICs, FPGAs.

 Storing elements: memories, registers.

 Communication elements: buses.

Architecture selection

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 101

(SIMD, MIMD)

Processor

architecture

Architecture selection (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 102

Architecture selection (cont’d)

•

•

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 103

Architecture selection (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 104

• General purpose processors: neither instruction set nor

microarchitecture or memory system are customized for

a particular application or family of applications

• ASIPs (Application Specific Instruction-set Processors):

 Instruction set, microarchitecture and/or memory

system are customized for an application of family

of applications.

 What results is better performance and reduced

power consumption.

Architecture selection (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 105

Architecture selection (cont’d)

• Skills and experience are very important at architecture

selection (it is not a straightforward procedure).

• Designer interaction and automatic design space exploration

should work together.

• Design space exploration and estimation are based on:

 An initial architecture model which should capture the

essential features of the class of architectures which

have to be taken into consideration.

 A component library containing processors, buses,

memory modules, and also models corresponding

to peripherals (reusable designs).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 106

Task: Discrete

Cosine Transform

Design space exploration example

Architecture selection (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 107

• During the partitioning step we decide what will be executed on

programmable processors (software components) and what will

be implemented in hardware (ASICs, FPGAs), and we distribute

the functionality captured by the specification among the allocated

system components.

• Partitioning is strongly related to architecture selection and

contains two main steps:

 Final allocation of the selected components for the

implementation of the system.

 Binding: assignment of functions to components (divide the

behavior of the system between allocated components) .

Hardware-software partitioning

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 108

• The set of factors that have to be taken into account during the hardware-

software partitioning of a system are closely tied to the design goals.

• Some of the considerations that can be taken into account are:

 Performance constraints (speed and power): functions that have a

great impact on the overall performance of the system may need to

be implemented in hardware.

 Implementation cost: if hardware resources can be shared among

functions, it may also be necessary how the partitioning impacts that

sharing.

 Flexibility: sometimes a software implementation is desired so that the

function or algorithm can be easily changed.

 Nature of computation: a function may be suitable for either hardware or

software implementation. For example computations which can achieve

a high degree of parallelism may be better suited for hardware.

 Communication: the overhead of communication between hardware and

software components has a significant impact to the overall performance.

Hardware-software partitioning (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 109

• The hardware-software partitioning is based on metric values derived

from profiling, static analysis of the specification and cost estimation.

• Profiling of the executable specification is used to obtain information
such as number of branches, loop counts, instruction frequencies, and

thus to find how critical is each process in terms of time and energy.

• The time-consuming processes are identified in terms of instruction

cycles if an instruction-set simulator is used, and the energy-consuming
applications are identified by using proper energy models.

• The hardware-software partitioning is performed through exact
methods (e.g. enumeration of the solutions) or through iterative

heuristic methods, in which the goal is to find a partitioning solution
that reduces several cost functions (e.g. cost, latency, power

consumption, memory requirements etc.).

Hardware-software partitioning (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 110

• Basic heuristics start from extreme initial solutions: put all

processes into the processor (software implementation) which
is minimal cost but probably does not meet performance

requirements, or put all processes to ASIC (hardware

implementation), which gives a maximal performance but
also maximal cost.

• Given one of these initial solutions, heuristics select which

process to move to other side of the partition to either reduce
hardware cost or increase performance, as desired.

Hardware-software partitioning (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 111

• More sophisticated heuristics try to construct a solution by

estimating how critical a process will be to the overall system
performance and choosing a software or hardware

implementation accordingly.

• Iterative improvement strategies may move components across
the partition boundary to improve the design.

• The whole procedure is guided by cost function(s) that reflects
the global quality of the partitioning and a starting solution is

modified iteratively, by passing from one candidate solution to
another based on evaluations of the cost function(s).

Hardware-software partitioning (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 112

• System constraints (Ci): maximum execution time (T), maximum

energy consumption (E) and maximum memory space (M) allowed
for each task.

• Estimated values of parameters for each task (Ci(t)): T(t), E(t), M(t).

• The cost function can have the following format:

Partitioning example 1

Example for allocating part of the tasks to software and the rest to

hardware, based on a cost function computed for each task:

• The threshold value (hardware-software boundary) is obtained by

the designer after taking into account how critical are the system

constraints.

weight factors correction terms

i

iii

i i

i
i tCCm

C

(t)C
kCF(t)))(,(f

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 113

Partitioning example 1 (cont’d)

C
o

s
t
fu

n
c
ti
o

n
 –

C
F

(t
)

System tasks

Hardware

Software

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 114

Partitioning example 2

Example for finding the best implementation (partitioning solution)

iteratively, based on a cost function that incorporates speed and power

and computed for each different implementation:

Number of iterations (implementations)

C
o

s
t
fu

n
c
ti
o

n

Optimum value of cost

function at iteration 7

All processes implemented

in software

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 115

Target

architecture

Shared Data Memory

FPGA Processor

Configuration

Memory

Instruction

Memrory

Data Data

Configurations Instructions

Partitioning example 3

Example for performing partitioning of system’s tasks on a given

architectural template in order to improve performance:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 116

Partitioning flow • The computational complexity of

basic tasks (represented as the

number of instructions executed

when an application runs) is

obtained by profiling and static

analysis.

• Profiling is based on instruction-set

simulation and reports the execution

frequency of the basic tasks.

• Static analysis calculates the size

of the basic tasks.

• We consider as kernels, the tasks

which have an instruction count over

a user-defined threshold (e.g. tasks

contributing more than 10% in the

total application instruction count).

Specification

Modeling and test

Analysis for partitioning

Translation to HDL and

Mapping to FPGA

Translation to source

code and Compilation

FPGA Processor

Validated executable

specification

Kernels Non critical parts

Partitioning example 3 (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 117

• Five applications were tested:

 Cavity detector (medical image processing application)

 OFDM transmitter (wireless communication systems)

 Image compression technique

 JPEG decoder

 Video compression technique

-68.510.9--Average

351.010.02,47724,767Video

471.323.02,53410,995JPEG

478.84.760212,835Image

461.59.21,44015,579OFDM

479.87.691012,039Cavity

No of kernels% instructions% sizeKernels sizeTotal sizeApplication

Partitioning example 3 (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 118

• Implementation:

 Non-critical parts are executed in an ARM7 RISC processor.

 Kernels are implemented on a XCV50 Virtex FPGA.

 We achieve significant speedup after executing the kernels on the FPGA,

in comparison with execution of the whole application on the processor.

A = CyclesHW/SW =

CyclesSW + CyclesFPGA + CyclesCOM

B = CyclesSW-ALL

Speedup = B / A

Partitioning example 3 (cont’d)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5

S
p

e
e

d
u

p

Cavity OFDM Image JPEG Video

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 119

• Most of the embedded systems are real-time systems in which the
correctness of their behaviour depends not only on the logical results

of the computations, but also on the time when the results are
produced.

• These systems are time-critical, i.e. the failure to meet time constraints

can lead to degradation of the provided service or to a system with

wrong operation.

• In addition, embedded systems are made up of concurrent processes:
the tasks share resources (e.g. processors) and communicate each

other.

• This makes scheduling of tasks a central problem in the design of

embedded systems.

Scheduling

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 120

• Time constraints are often expressed as deadlines at which tasks have

to complete their execution.

 Hard deadline: has to met strictly, and if not the system will not

operate correctly.

 Soft deadline: tasks can be finished after their deadline, although

the value provided by completion may degrade with time.

• So, an important property in real-time embedded systems is the

predictability that means the possibility to guarantee that deadlines are

met as imposed by requirements:

 Hard deadlines are always fulfilled.

 Soft deadlines are fulfilled to a degree sufficient for the imposed

quality of service.

• The question now is: can the given tasks be scheduled on the available

resources (processors, custom hardware etc.), so that deadlines are

fulfilled ?

Scheduling (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 121

• The scheduling problem: Which task has to be executed

at a certain moment on a given hardware resource (e.g
processor), so that the time constraints are fulfilled.

• A set of tasks is schedulable if, given a certain scheduling

policy, all constraints will be completed (which means that
a solution to the scheduling problem can be found).

• At least for high-cost and high-demanding real-time
embedded systems, it is needed to check off-line, in

advance, if the system is schedulable.

Scheduling (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 122

• What do we need to know about a task:

 Computation time (worst case).

 Deadline of task completion.

 Regularity of task arrival (periodic tasks with period T and non-

periodic tasks with variable period of arrival).

 Usually, it is assumed that T = D.

• In addition, we must take into account:

 Precedence relations (due to application-dependent execution
order or due to data dependencies).

 Resource dependencies due to shared recourses (e.g. a shared

buffer).

Scheduling (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 123

• There are three basic scheduling policies:

 Static cyclic scheduling (off-line without priority): a table is

generated off-line containing activation times for each task.

The activation sequence of such table is repeated cyclically .

 Time-driven scheduling (off-line without priority): it assigns time

slices to processes independent of activation, execution times

or data dependencies.

 Priority-based scheduling: tasks are activated in response to a

certain event (e.g. periodic signal or message for arrival of a new

task). In case of conflict (several tasks ready to be executed on the

same processor), priorities are considered. Priorities can be

assigned statically (fixed, off-line and kept unchanged during the

execution) or dynamically (changed during execution).

• The scheduling can be performed in an preemptive manner (a running

task can be interrupted in order another task to be executed) or in a non

preemptive manner (a task, ones started, may not be stopped).

Scheduling policies

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 124

• In static cyclic scheduling, the activation times of all tasks and
the execution order are generated off-line.

• These activation times determine the behaviour of the system
over a period Ttotal. The sequence of activations is repeated in
a cyclic manner.

• If all tasks have the same period T then Ttotal = T.

• If the tasks have different periods T1, T2, … , Tn then:

Ttotal = LCM (T1, T2, … , Tn)

Static scheduling

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 125

Example of static cyclic scheduling with four independent tasks
executed on the same processor.

Ttotal = LCM (10, 20, 40) = 40

Static scheduling (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 126

Static scheduling (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 127

Static scheduling (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 128

• Advantages of static cyclic scheduling:

 High predictability.

 Easiness of debugging.

 Low execution time overhead (not much to do for the real-

time kernel during execution time).

• Disadvantages of static cyclic scheduling:

 Low flexibility: quality degrades rapidly if periods and

execution times deviate from those predicted, and if new

tasks are added a rescheduling is needed.

 Sometimes lead to very long total periods.

 Tasks have to be manually split in order to fit into available

slots.

Static scheduling (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 129

• In time-driven scheduling time slices are assigned to the tasks,
independent of activation, execution times or data dependencies.

• One of the basic time-driven scheduling strategies is the Time
Division Multiple Access (TDMA) strategy which keeps a fixed

assignment of time slices to the tasks. This assignment is repeated
periodically.

• The main advantages of TDMA are predictability and simplicity. The

tasks can be merged in one resource without influencing each other.

• The main limitations of TDMA are efficiency and long total response

times.

• It is applicable to communication and data processing.

Time-driven scheduling

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 130

• Example of TDMA with 4 independent tasks executed on the same processor.

 Assignment of 12, 10, 5 and 13 time units (ms) to tasks T1, T2, T3, T4.

 Total period is then: T = 40 ms.

 T1: execution time 45 ms, response time 129 ms, T2: execution time 23 ms,

response time 95 ms, T3: execution time 54 ms, response time 426 ms,

T4: execution time 30 ms, response time 111 ms.

 At t = 0 all tasks are activated, and at t = 150 ms T2 is activated again and

continues execution at t = 172 ms.

Time-driven scheduling (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 131

• A second basic time-driven scheduling strategy is the Round Robin

which departs from the fixed time slot assignment and terminates a
slot if the corresponding task ends.

• Therefore, slots are erased or shortened, and the cycle time (ti) of

the round robin schedule is time-variant (instead of the constant
period in TDMA strategy).

• This strategy avoids the idle times of TDMA and reaches maximum
resource utilization.

• On the other hand, the tasks execution is no longer independent

(a task can finished earlier if the other tasks are not executed).

• It is also applicable to communication and data processing.

Time-driven scheduling (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 132

• Example for Round Robin scheduling: T1 now ends at t = 113 ms, and more

impressively T3 has a response time of 179 ms.

• Note that T3 is finished so quickly because the other processes were not

executed.

Time-driven scheduling (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 133

• In priority-based scheduling the tasks are activated in response to

an input event (e.g. periodic signal or message for arrival of a new
task). Priorities can be assigned statically or dynamically.

• In a static priority assignment model the tasks are activated by the

arrival of a periodic input event.

• A first approach is to assign priority to the task with the shortest

period. This is called Rate Monotonic Scheduling (RMS) and is very
popular in embedded system design due to its simplicity and ease

of analysis.

• A second approach is the Deadline Monotonic Scheduling (DMS)

which is an extension of RMS for deadlines smaller than a period.

Priority-based scheduling

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 134

• Assume two periodic tasks with periods T1 and T2, and each has a deadline that is

the beginning of its next cycle. Task t1 has T1 = 50ms, and a worst-case execution

time of C1 = 25ms. Task t2 has T2 = 100ms and C2 = 40ms.

• Rate Monotonic Scheduling (RMS):

Priority-based scheduling (cont’d)

t1 t2
t2 completes before

1st deadline
t1 completes before

2nd deadline

1st deadline t1 2nd deadline t1, 1st deadline t2

0 10 20 30 40 50 60 70 80 90 100 110

t1 t2

1st deadline t1 2nd deadline t1, 1st deadline t2

t2 completes before

1st deadline
t1 misses

1st deadline
t1 executes again to
meet 2nd deadline

0 10 20 30 40 50 60 70 80 90 100 110

Priority(t1) > Priority(t2)

Priority(t2) > Priority(t1)

t1 completes before

1st deadline

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 135

• Static priority algorithms cannot reach maximum resource utilization.

• For Rate Monotonic scheduling:

• All deadlines met when Utilization is less or equal to n (21/n – 1)

• Example:

Priority-based scheduling (cont’d)

n: number of tasks

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 136

• To reach a higher resource utilization, the priorities must be
assigned dynamically at run time.

• The best dynamic priority assignment strategy is the one that

gives the highest priority to the task with the earliest deadline.

• The advantage of the Earliest Deadline First (EDF) scheduling

minimizes number of missing deadlines.

• Dynamic priority assignment requires a scheduler process

running the assignment strategy and observing the system’s
state. This process adds overhead in terms of performance

and power consumption.

Priority-based scheduling (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 137

• The techniques that are used to schedule the tasks in an embedded system are usually

integrated to an RTOS (Real Time Operating System).

• In general, an RTOS is a real-time software that manages the time of a microprocessor

to ensure that all time critical events are processed as efficiently as possible.

• A task (process) may be in one of three basic states: running (currently executing),

ready to execute or blocked (waiting). A task may not be able to execute until, for

example, its data has arrived. Once its data arrives, it moves to the ready state.

Scheduling and RTOS

RTOS state diagram

NEW READY RUNNING EXIT

BLOCKED

Data ready

No highest
priority task is

ready

Needed resource

is unavailable

(highest priority

task is ready)

End of waiting

Release

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 138

Scheduling and RTOS (cont’d)

• The RTOS’s scheduler chooses the highest priority ready process to

run next, according to the applied scheduling policy.

• Unlike, general-purpose operating systems, RTOS generally allow to

a process to run until it is pre-empted by a higher priority process.

• General-purpose operating systems often perform time-slicing

operations to maintain fair access of all the users of a system, but
time-slicing does not provide the control required for meeting strong

deadlines.

• This is the main reason for which in real-time embedded systems we

use RTOS or specific kernels to perform the scheduling process.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 139

Simple example on system-level synthesis

• The system to be implemented is modelled as a data flow

graph:

 A node represents a task (a unit of functionality

activated as response to a certain input and which

generates a certain output).

 An edge represents a data dependency between two

tasks.

• The order of tasks execution is data dependent and priorities

between tasks are set by data dependencies.

• Constraints:

 Period = 42 time units (the dataflow graph is activated

every 42 time units, which means that each activation

has to be terminated in time less than 42 units.

 Cost limit = 8 (the total cost of the implemented system

has to be less than 8).

 Non-preemptive scheduling is only supported.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 140

Simple example on system-level synthesis (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 141

Simple example on system-level synthesis (cont’d)

•

•

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 142

•

•

Simple example on system-level synthesis (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 143

Simple example on system-level synthesis (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 144

Simple example on system-level synthesis (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 145

Simple example on system-level synthesis (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 146

Simple example on system-level synthesis (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 147

Simple example on system-level synthesis (cont’d)

•

•

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 148

Simple example on system-level synthesis (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 149

Simple example on system-level synthesis (cont’d)

•

•

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 150

• What did we achieve ?

 We have selected an architecture.

 We have mapped tasks to the processors and ASIC.

 We have found a schedule.

• However, nothing has been implemented yet !

The decisions to be implemented have to be based on
simulation and estimation.

• After that we can perform the software and hardware
implementation, with a degree of confidence that we will

get a correct prototype.

Achievements

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 151

Communication &
interface synthesis

• After system partitioning and scheduling we got a set of processes assigned to
system components (processors executing the software + hardware components).

• There is a communication between these processes, as well as an interaction of
these processes with peripheral devices.

• Interface/communication synthesis has to generate the hardware and software,
interconnecting the system components and enables processes to communicate
with each other and with peripheral devices.

Communication and interface synthesis

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 152

Communication and interface synthesis (cont’d)

•

•

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 153

Channel binding

•

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 154

Channel binding (cont’d)

•

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 155

Channel binding

Channel binding (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 156

Communication refinement

•

•

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 157

In this step the interfaces needed for a correct functionality of the

system can be generated (both software and hardware communication

components):

• Access routines inside the processes (in executable code for

software processes or in hardware for processes implemented on

hardware components).

• Controllers (buffers, FIFOs, arbitration logic) for implementing correct

access to the communication support.

• Adapters needed to interface components which use incompatible

protocols.

• Device drivers to support access to peripheral devices.

• Low-level support for communication-related tasks (interrupt

controller, DMA etc.).

Interface generation

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 158

There are several approaches for the generation of interfaces:

• Manually: it is still one of the most applied technique due to many standards

and proprietary connection schemes.

• Library-based: predefined and pre-tested device drivers and interface circuits

(e.g. ARM AMBA bus specification kit).

• Template-based: predefined code fragments stored in a library that are used

to compose a real interface during compilation. This approach provides more

flexibility than the library-based approach, but more sources for errors.

• Pattern-based: patterns describe typical connection problems for components,

but without predefined implementation. Provides efficient reuse of existing

knowledge to create (manually) new device drivers and interface circuits.

• Generator-based: only few approaches exist due to the complexity and

heterogeneity of components (e.g. the Cadence VCC tool is a mixed library-

and generator-based approach.

• Component-based (IP): components with several standardized interfaces

(disadvantage: incompatibility between different IP vendors).

Interface generation (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 159

• AMBA (by ARM) is an on-chip bus specification for system-on-chip designs.

• Provides two on-chip buses connected through a bridge:

 A high-speed system bus (AHB) to connect processors, high-performance

peripherals, DMA controller and on-chip memories.

 A low-speed peripheral bus (APB) that follows a simpler protocol to connect

timers, general–purpose (non-critical) peripherals, and serial interfaces.

• The implementation of communication strategies will be investigated later.

An example: AMBA bus system

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 160

• System-level synthesis produces a system architecture and the behavioral

models assigned to the components of this architecture.

• All steps of system synthesis from the design space exploration to the

communication synthesis have to be supported by CAD tools.

• Architecture selection allocates the components for the implementation of

the system and decides on the system topology.

• Hardware-software partitioning is an important aspect of the system-level

synthesis that decides about the implementation nature of each system task.

• Timing behavior is critical for real-time embedded systems. So, scheduling

is another quite important aspect of the system-level synthesis that decides

about the order and the manner of execution of the system tasks.

• Communication synthesis produces the hardware and software which

interconnects the system components and allows them to communicate.

• Design decisions are based on the estimation of design parameters

(next lecture) that can be performed through system analysis, simulation

or prototyping.

Conclusions

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 161

3b. System estimation

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 162

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 163

Estimation

Estimation

Estimation

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 164

• Through estimation we get design parameters for the system without

actually implementing it.

 Supports design decisions.

 Enables design space exploration.

 Forms the basis for system optimizations.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 165

• Performance:

 Hardware: clock period, latency, execution time, throughput.

 Software: execution time, worst-case execution time,

throughput.

 Communication: communication time, throughput.

• Cost: processing resources, silicon area, memory needs.

• Power consumption: in both hardware and software
components.

• Others: time-to-market, size etc.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 166

• Clock period (T) depends on the used resources and technology, as well

as on delay of the system’s functional units.

• When a datapath contains Nk functional units with delays Dk , then the

clock period is usually estimated by:

T = max (D1, D2, …, Dk)

• Latency (L): number of clock periods needed for execution of a task in a

given datapath.

• Execution time (Tex) for a task: Tex = T x L.

• Throughput (R) for a task: R = 1 / Tex .

• The estimation of the timing behavior of a system is based on estimations

of the execution time at the process level and on the estimation of the

communication times.

• It is strongly connected to the applied scheduling strategy and to the level

of resource utilization.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 167

• Silicon area estimated in:

 Actual (sq. mm) or parametrized (λ2) units.

 Number of transistors or equivalent gates.

 Number of logic or functional blocks.

• Memory and register requirements.

• Package and number of input-output pins.

In CMOS technologies, λ

is the half of the minimum

allowed length (LMIN) of

a single transistor’s gate.

23452009

33652007

45902005

651302003

901802001

λLMIN (nm)Year

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 168

• Average power consumption in digital CMOS circuitry:

 Pdynamic is the power consumed due to charging and

discharging of the capacitive loads, and is given by

the product of the load capacitance, the square of the

supply voltage and the frequency.

 Pshort-circuit is the power consumed due to short-circuit currents

between the supply rails during switching.

 Pleakage is the power consumed due to leakage currents.

 Pstatic is the static power consumption occurred in some CMOS

implementations.

• The first two components are strongly dependent on the transition

activity of the circuitry.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 169

• The power consumption is reduced by lowering the supply voltage.

However, in this case the delay will be increased.

• The reduction of the load parasitic capacitance may lead to simultaneous

improvement of power consumption and delay of a logic block. However,

the driving capability of the subsequent block will be reduced, increasing

its delay.

• Due to the fact that power and delay are conflicting metrics, it is better to

use as metric for hardware components the power-delay product.

s: switching activity factor

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 170

Throughput metrics:

amount of work that a processor

can perform in a given time

period (benchmarks are used)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 171

• An important performance metric for real-time systems with hard timing

constraints is the Worst Case Execution Time (WCET).

• WCET cannot be estimated by profiling. Program analysis techniques

are used.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 172

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 173

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 174

• Power (in W) consumed during the execution of the application
code to the processor (important for dimensioning of packaging,
power supply, cooling).

• Power-delay product: Pavg x Texe (in mW x sec). It is important for

mobile devices with high performance requirements.

• For processor power characterization: power related to the clock
cycle (in mW/MHz), and also power in mW/MIPS and in mW/SPEC.

• SPEC (Standard Performance Evaluation Corporation) is a
speed metric for processors, which is based on performance
measurements for standard compute-intensive workloads.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 175

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 176

• A design environment should contain several estimation tools
for the same parameter, which differ in accuracy and estimation
time.

• They can be used at different stages of the synthesis process.

• Estimation of several parameters can be performed during the
high-level analysis of the system, as well as during the simulation
and the prototyping stages.

• At certain stages (levels) of the design procedure it is not needed
that the estimation quantitatively reflects the value of the
respective parameter.

• It is enough that it captures the evolution of the parameter from
one design step to the other.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 177

3c. Low-level synthesis:
Hardware synthesis

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 178

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 179

• During the implementation
phase, hardware & software
components have to be
developed (implemented)
in a coordinated way.

• Hardware-software co-
simulation is important.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 180

• Encoding in a hardware description language: VHDL, Verilog,
SystemC.

• Performing successive synthesis steps:

 High-level synthesis.

 Register transfer level synthesis.

 Logic-level synthesis.

• Testing by simulation, co-simulation and prototyping platforms.

• During prototyping, a prototype of the hardware is constructed
and the generated software is executed on the target architecture.

• Layout and physical implementation.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 181

Hardware
design styles

Full-custom
Semi-custom

Cell-based

Standard-cell
design

Macro-cell
design

Array-based

Pre-diffused:
Gate arrays,
Sea of gates

Pre-wired:
FPGAs

Mapping of the
design to the
cells available

in a library.

Using of generators
for automatic synthesis

of memories, PLAs,
complex components

(e.g. multipliers).

Prefabricated
non-connected

matrices that are
programmed for

connection during
chip fabrication.

Programmable
arrays of generic
logic modules,

programmed by the
User and not the
semiconductor

foundry.

Uses predesigned
blocks & CAD tools

for hierarchical
design & optimisation

(reduced design time/cost) .

Hand-crafted
design to optimise

area & performance
(high effort/cost,
high-quality, only
for critical parts
or high volume).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 182

• Hardware designs

are specified using

Boolean equations,

schematic diagrams,

state transition

diagrams, finite state

machine or HDL

descriptions in a

technology independent

form.

• Logic synthesis tools

are then used to

synthesize the above

specifications into

functional and control

units, respectively, and

apply optimisations.

RTL description

in HDL Language often

manually or by using

tools such as Synopsys

Behavioral Compiler.

Gate-level description

in HDL Language by

using logic synthesis

tools, such as Synopsys

Design Compiler.

Physical synthesis by

back-end design tools,

such as the Magma

tools flow.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 183

Adders, multipliers, registers,

multiplexers, memories

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 184

• At any stage of the design flow, the design refinement step is performed by using CAD

tools (in conjunction with manual methods).

• In more recent years, some vendors are specialized in design of reusable blocks, which are

sold as IP (Intellectual Property blocks) to other design houses, who then assemble these

blocks together to create System-on-Chips (we will investigate this issue in a next lecture).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 185

• Hierarchical decomposition of a complex system into simpler subsystems and
further decomposition into subsystems of more simplicity.

• A system design can be recursively broken into components, each of which is
composed of smaller components until the smallest components can be
described in terms of gates and/or transistors.

• At any level of hierarchy, each component is treated as a black box with known
input-output behavior, but the behavior description is unknown. Each black box is
designed by building simpler black boxes until the lowest level of hierarchy (gate
/ transistor level).

• This is a hierarchical top-down design approach which helps to a step by step
reduction of the system’s complexity, and to an easier understanding of the
functionality (without having to worry about low-level details).

• The bottom-up design approach starts by designing the lowest-level components
and use these components to build components of more complexity until the final
design requirements are met (if a low-level block turns out to be infeasible the
whole process has to be repeated).

• Current design teams use a mixture of both approaches where critical low-level
blocks are built concurrently with the system and blocks development.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 186

Example of top-down design approach:

4-bit ripple-carry adder

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 187

Adders, multipliers, registers,

multiplexers, memories

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 188

• The tasks in high-level synthesis are classified into allocation, binding
(assignment of functionality to the resources) and scheduling.

• The components / resources of the allocation / binding task at the RTL

are taken from a library of available modules, which includes

components such as ALUs, adders, multipliers, registers, multiplexers,
memories.

• Scheduling assigns each of the operation to time intervals (control

steps).

• The data flows from one stage of registers to the next during each

control step after the computation phase in a functional unit.

• The control steps are usually the length of the clock cycle.

• After the scheduling and the binding (assignment of operations to the
functional units), the interconnects between the various units are also

established.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 189

Data flow graph
Synthesized data path using a

high-level synthesis system

Example showing the ability of CAD tools to synthesize a behavioral

description into a data path

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 190

• Some small modifications in a circuit can help make it easier to validate the

absence of faults. This approach to design is called design for testability (DFT).

• DFT attempts to modify the circuit during the design phase without affecting its

functionality so as to make it testable.

• In a combinational circuit, its correctness can be validated by exhaustively

applying all possible input patterns (2N) and observing the responses.

• The situation gets more dramatic in sequential modules, because the output

depends not only upon the applied inputs, but also upon the value of the state

(2N+M).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 191

• However, a single fault in a circuit is covered by a number of input patterns,

and thus detection of that fault requires only one of these patterns, while the

rest are not useful.

• A substantial reduction in the number of patterns can be obtained by relaxing

the condition that all faults must be detected. Typical test procedures attempt

a 95-99% fault coverage.

• Detecting the last single percentage of possible faults might require an

exorbitant number of extra patterns, and the cost of detection might larger

than the eventual replacement cost.

• Thus, it is possible to test most combinational modules with a limited set of

input vectors.

• Testing a single fault in a sequential module requires a sequence of vectors,

and this might make the process very expensive.

• One way to address this problem is to turn the sequential module into a

combinational one by breaking the feedback loop during the test procedure.

This is the key concept behind the scan-test approach.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 192

• The registers have been modified to support two operation modes. In the normal

mode they act as N-bit clocked registers. During the test mode the registers are

chained together as a single serial shift register. All (full-scan) or some of the

registers (partial scan) in a system can be connected in a test scan chain.

• An excitation that is applied to the logic module A, entered through ScanIn and

shifted into the registers under control of a test clock.

• The excitation is applied to the logic, propagates to the output of the logic module,

and the result is latched into the registers.

• The result is shifted out through the ScanOut & compared with the expected data.

Modification of the

registers is performed

Automatically using

tools such as

Synopsys Tetra

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 193

• This approach incurs only a minimal overhead.

• The serial nature of the scan chain reduces the routing overhead.

• Traditional registers can easily modified to support the serial scan technique.

• The only addition is an extra multiplexer at the input. When Test is low, the

circuit is in normal operation, and when Test is high selects the ScanIn input

and connects the registers into the scan chain.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 194

FSM
Memory

under test
Response
analyzer

Data-out
Data-in

Address &

R/W control

• An alternative approach to testability is having the circuit itself generate the

test patterns instead of requiring the application patterns.

• This requires the addition of extra circuitry for the generation and the analysis

of the patterns.

• The self-test (or Built-in Self Test – BIST) technique is beneficial when testing

regular structures such as memories.

• Memory tests include the reading and writing of a number of different patterns

into and from the memory using several addressing sequences.

• The overhead is small compared to the size of the used memory modules.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 195

Adders, multipliers, registers,

multiplexers, memories

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 196

• Logic synthesis deals with the synthesis and the optimization of circuits at

the logic (gate) level.

• Digital circuits typically have sequential and combinational components.

• These can be specified by finite-state machines, state transition diagrams,

Boolean equations, schematic diagrams or HDL descriptions.

• Logic synthesis includes a range of optimisations and refinements:

 Logic optimization of Boolean functions.

 State machine optimization by state minimization and encoding.

 Retiming and resynthesis.

 Technology mapping.

 Post-layout transistor sizing.

• The optimisation steps are selected according to the chosen optimization

metric (area, speed, power or trade-off between them), and they are either

technology-independent (the first two) or technology-dependent (the others).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 197

• Combinational circuits can be modeled by two-level sum-of-products

expressions, which can be optimised by two-level minimization tools

(Espresso, Mini, Presto).

• The logic optimisation is based on table-based methods (Karnaugh maps),

which are used to minimise a Boolean function.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 198

• The example previously discussed demonstrate a two-level optimization

methodology. The final circuit implementation for the example has two

stages of logic.

• However, cell libraries used to map the gates in the logic circuit to the

gates available from the foundry, usually have more complex gates which

are a combination of several gates such as AND-OR, OR-AND, or NOR-

AND gates.

• To fully utilize these cell libraries, multi-level logic optimization techniques

are used. These techniques are not restricted to two-level logic networks

but instead deal with multiple-level logic circuits.

• This provides the necessary flexibility required to map the logic network to

complex cells in the technology library, hence optimizing area and delay.

• However, multi-level optimization techniques are not exact, i.e. only

heuristics exist for modeling and optimizing multiple-level networks.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 199

• Sequential circuits are usually represented by FSM models. At every clock

cycle the data computed by the combinational circuit is stored in the

registers along with other state and control information.

• In a sequential circuit represented by an FSM, the set of states, inputs and

outputs, S, I, and O correspond to k flip-flops outputs (Q0 , …, Qk–1), n input

signals (I0 , …, In–1) and m output signals (O0 , …, Om–1).

• The finite-state machine model is usually represented using state

transition diagrams.

• State transition diagrams are optimised by state minimization and state

encoding.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 200

Example - Modulo-4 counter: the circuit counts from 0 to 3 back to 0 when

the count signal C is 1. When C = 0, the counter stays in the same state.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 201

• State minimization aims at reducing the number of machine states used

to represent an FSM.

• Since the minimum number of bits required to encode n states is log2n,

reducing the number of states can lead to a reduced number of flip-flops.

• It also leads to fewer transitions, fewer logic gates, and fewer inputs per

gate.

• These reductions not only lead to lower area cost but also speed up the

design and reduce the power consumption.

• State minimization can be done by finding equivalent states and by using

‘don’t-care’ information to remove states. Two states are equivalent if and

only if, for every input, both the states produce the same output and the

corresponding next states are equivalent.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 202

• State minimization is performed in two steps:

 Firstly, we separate the states with the same outputs for the same inputs.

 Secondly, we compare the next states for each state in the same group.

 If the next state for two states within a group is in the same group, then the

two states are considered equivalent, and they are combined in a single

state.

Example for FSM state minimization:

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 203

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 204

• After the states have been minimized, state encoding is performed

to assign a binary representation to the states of the FSM.

• In the previous example the minimized FSM has four states, whereas
the original state transition graph had five states.

• Hence, whereas it would have taken 3 bits to encode the five states
in the original FSM, the reduced FSM requires only 2 bits for the

encoding.

• Fewer encoding bits implies fewer flip-flops in the circuit and, hence,
reduced area and increased speed of the final design.

• In general, there are several other encoding methodologies such as
gray encoding, bus-invert encoding etc., which are used to reduce

circuit switching or bus switching in order finally to reduce the power
consumption of a circuit.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 205

• Technology mapping forms the link between logic synthesis and physical

design. After logic synthesis, a circuit-level schematic or netlist of the

design (containing the elements with their interconnections) is generated

using a vendor-independent logic library.

• This library has elements such as low-level gates, flip-flops, latches, and

usually multiplexers, counters, and adders.

• Typically, a netlist translator along with a vendor-specific library is used to

replace the vendor-independent generic elements and generate the netlist

in a particular vendor’s netlist format.

• The process of transforming the generic cell based logic network into a

vendor library-specific network is known as library binding or technology

mapping.

• This step allows us to retarget the same design to different technologies

and implementation styles.

• Typically, the cell library vendor provides different libraries optimized for

area, performance, power.

Technology mapping

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 206

• Each cell in the vendor library contains a physical layout of the
cell, a timing model (delay characteristics and capacitances on
each input), a wire load model, a behavioral model (in VHDL or
Verilog), circuit schematic, cell icon (for schematic tools), and
for bigger cells, its routing and testing strategy.

• CAD tools use the timing characteristics to analyze the circuit
and determine the capacitances at each node in the netlist, and
use delay formulas along with the timing characteristics of each
element to compute the delays for each node.

• Wiring capacitances are included by estimating a wire-load
model initially and then later using the back-annotation
information from the floorplanning and place-and-route tools.

Technology mapping (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 207

• Cell-library binding (technology mapping) is in fact the process of

transforming the set of Boolean equations or the Boolean network into

a logic gate network with the gates in the cell library.

• Cell-library binding approaches are classified into two types: rule-based

and tree-based approaches.

• Rule-based approaches replace parts of the logic network with equivalent

cells from the cell library, based on some specific rules.

• The algorithms used in tree-based approaches attempt to find a cover of all

the gates in the given logic graph using the cell-library cells so as to minimize

the area, delay and recently the power consumption.

Technology mapping (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 208

Adders, multipliers, registers,

multiplexers, memories

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 209

Creation of an initial map

of the location of the

various blocks.

Apart from placing and

routing of blocks, includes

the creation of the clock

distribution architecture.

Clock is distributed

through balanced clock

tree with a low-enough

slew.

By design rule checkers.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 210

• Extensive simulation and functional verification techniques are used

by designers at every stage of the design to ensure that no bugs are

introduced in the process of refining the design from the behavioral

level to the final layout.

• The simulations of the RTL, logic, and physical level descriptions are

performed by different kind of simulators.

• Logic-level simulators simulate the circuit at the logic gate level and

are used extensively to verify the functional correctness of the design.

• Circuit-level simulation, which is the most accurate simulation

technique, operates at a circuit level. The SPICE program is the most

known circuit simulation and analysis tool.

• SPICE simulates the circuit by solving the matrix differential equations

for circuit currents, voltages, resistances, and conductances.

• SPICE is quite slow, but accurate and useful for blocks characterization.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 211

• Switch-level simulators, on the other hand, model transistors as switches

and, unlike logic simulators, wires are not assumed to be ideal but instead

are assumed to have some capacitance.

• Logic-level simulators are typically event-driven. These model the system

as a discrete event system by defining appropriate events of interest and

how the events are propagated throughout the model.

• Hardware description languages such as VHDL and Verilog have been

designed based on event-driven simulation semantics (Modelsim).

• For the delay calculation during the physical synthesis, static timing analysis

is used (PrimeTime tool).

• It analyses the paths in the circuit netlist in order to compute the delay along

the various paths and determine the critical path(s) in the circuit.

• The timing analysis is performed by using the gate delay, rise and fall times,

capacitance, load values of the cell library.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 212

• Since testing and correcting a chip once it has been manufactured is a

difficult and expensive task, it is essential to verify functional and timing

characteristics of the design.

• FPGAs are increasingly being used for circuit prototyping and verification

due to their ease of reconfigurability and programming.

• Once the netlist of the circuit design has been generated, it is used to

program an FPGA-based circuit consisting of one or several FPGAs

(depending on the size of the design).

• Test patterns are then applied to this design to check its functionality.

• Outputs of the emulation circuit are compared with the responses expected

according to the system’s specification.

• If design errors are found, the FPGA boards can easily be reprogrammed

after the design has been fixed, and it is this ease of reconfigurability that

makes FPGAs an attractive, although expensive, prototyping system.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 213

Masks generation and chip fabrication

Single-crystal silicon ingot

Silicon wafers
Diameter: 30 cm

Depth < 1mm

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 214

Masks generation and chip fabrication (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 215

Masks generation and chip fabrication (cont’d)

CMOS inverter
Out = NOT (In)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 216

Masks generation and chip fabrication (cont’d)

VDD

GND

A

B

C D

A B

C

D

OUT

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 217

Masks generation and chip fabrication (cont’d)

Full adder:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 218

• By far one of the most expensive phases in the production of an integrated

circuit, testing is performed by applying test patterns to the unit being tested

and comparing the unit’s responses with the expected outputs.

• Automatic test pattern generation (ATPG) tools use the circuit netlist to

derive the sequence of the test vectors which exercise as many paths in

the design as possible.

• Manufacturing tests can be classified into functional tests, diagnostic tests,

and parametric tests.

• Functional tests are simple tests which determine if a chip is functional.

• Diagnostic tests are more involved since they aim at debugging the

manufactured chip to determine which component in the chip has failed

and possibly locate the fault within the component.

• Parametric tests check for clock skew, delay faults, noise margins, clock

frequencies, etc. in the range of working conditions, such as supply voltage

and temperature, for which the chip is supposed to function.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 219

EASY project: Wireless LAN System-on-Chip

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 220

EASY project: Wireless LAN System-on-Chip

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 221

• Technology: 0.18 microns, Supply voltage: 1.8 V (core), 3.3 V (pads)

• Chip area: 88.51 sq. mm, Core area: 73.55 sq. mm

• Chip complexity: 4,400,000 equivalent gates (over 17.5 millions transistors !)

• Core area occupied by logic: 43.10 sq. mm, Core area occupied by memory: 30.45 sq. mm

• Total metal (six layers) interconnections: 47 m !, Power and clock wires: 10.1 m !

EASY project: WLAN System-on-Chip

Fabrication

Design

EASY
TEST
CHIP

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 222

• As advances in semiconductor technology continue to provide the

ability to put more on silicon with increasing circuit densities and

performance, there is an increasing use of CAD tools to automate

the design process.

• Complexity has also led to the extensive use of language-based

approaches (HDLs) for digital design.

• At a lower level of abstraction, logic synthesis tools are used in order

to handle large and complex designs.

• Design for testability is important in hardware design.

• The linking of the physical design and logic synthesis is becoming

important since the effectiveness and accuracy of logic synthesis is

impacted by the feedback and parasitic information provided by

floorplanning tools.

• Efficient hardware simulators, emulators and prototyping environments

are also required in modern hardware design.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 223

3d. Low-level synthesis:
Software generation

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 224

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 225

• During the implementation

phase, hardware and software

components have to be

developed (implemented)

in a coordinated way.

• Hardware-software co-

simulation is important.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 226

• There are some issues making different the software synthesis for

embedded systems:

 Increasing amount of software.

 Different types of processors (CISCs, RISCs, DSPs,

Microcontrollers, ASIPs etc.).

 Strong time constraints are imposed.

 Limited amount of memory available.

 The hardware support and interaction has to be considered during
the software generation.

 Code optimisations are needed in order to make use of the
particular features of the underlying architecture.

 Very often the application is not based on a general purpose

operating system, so an application-specific RTOS or a small
RT kernel has to be generated together with the software.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 227

• Representing the program using a design pattern (computational
model).

• Encoding in an implementation language (C, C++ etc.).

• Compiling and assembling for the target processor.

• Generation of a real-time kernel or adapting to an existing real-time
operating system (RTOS).

• Testing and debugging (in a development environment).

• There are many available tools which perform automatically many of
the low-level software implementation tasks:

 Code generators (from software model to C).

 Compilers, assemblers and linkers.

 Test generators and debuggers.

 Emulation and co-simulation tools and platforms.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 228

• Usually, software generation has to do with two processors: the

development processor (on which we write and debug our program)

and the target processor (to which we will run our final program and

which will form part of our embedded system).

• Compilers translate structured programs into assembly programs.

Structured programming languages use high-level constructs that simplify

programming, so each of them may be translated to several assembly

instructions. Modern compilers perform optimization to reduce the code

size improving the performance.

• In embedded systems development, cross-compilers are used in most

cases. They are executed in the development processor, but generate

code for the target processor.

• Assemblers translate assembly instructions to binary machine instructions.

• Linkers allow the creation of a program from separately-assembled files:

combines the machine instructions of each program into a single program,

perhaps incorporating instructions from a library.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 229

• Debuggers help the programmers to evaluate and correct their
programs. They run on the development processor and support
stepwise program execution. Whenever the program stops, the
user can examine values of various memory & register locations.

• Instruction-set simulators (ISS) run on the development processor,
but execute instructions of target processor.

• Emulators support debugging of the program while it is executed
on the target processor (use of board hosting the target processor).

• In specific in-circuit emulators the board may have the capability
for connection with the real embedded system.

• The availability of low-cost and high-quality development
environments for a processor heavily influences the choice
of a processor.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 230

FailCompiler

Linker

C

program

C

program

Assembly

file

Binary

file

Binary

file

Binary

file

Executable

file

Assembler

Implementation Phase

Debugger

Simulator
(ISS)

Verification and Emulation Phases

Library

Emulator

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 231

• Representing the program using a design pattern
(computational model).

• A design pattern is a generalized description of the design
for modeling programs (software tasks).

• The developer determines the details to customize the pattern
(computational model) to the particular programming problem.

• State machines are useful in many contexts: parsing the user
inputs, responding to stimulations, controlling the outputs.

• After the determination of the programming problem’s states
and the interaction between them, the program is implemented
(encoded) in a high-level language (e.g. C, C++).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 232

idle

buzzer seated

belted

nse / nu

se / ton

nbe / ton

be / toff
be / boff

nbe / bon

nse / nu

nse / boff

Initial state

nse / toff

Inputs:

nse (no seat)

se (seat)

be (belt)

nbe (no belt)

Outputs:

nu (null)

toff (timer off)

ton (timer on)

bon (buzzer on)

boff (buzzer off)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 233

#define IDLE 0

#define SEATED 1

#define BELTED 2

#define BUZZER 3

{

int state = IDLE;

switch (state) {

case IDLE: if (no seat) { state = IDLE; }

if (seat) { state = SEATED; timer on = TRUE; }

break;

case SEATED: if (belt) { state = BELTED; }

if (no belt) { state = BUZZER; buzzer on = TRUE; }

if (no seat) { sate = IDLE; timer off = TRUE;}

break;

…

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 234

• Compilation is not only

a translation to assembly,

but also optimization of

the code.

• Compiler has the ability

to determine the quality

of the code in terms of use

of the CPU and memory

resources, and code size.

HLL

Analysis and initial translation

Machine-independent

optimizations

Machine-dependent

optimizations

Assembly

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 235

• The source code is not a good representation for the compiler, so initially it is
translated into an intermediate form (usually in a data flow graph), in order to be
manipulated and optimised by the compiler.

• The representation should be low-level enough to allow optimization and
estimation, and high-level enough to avoid excessive details (register allocation,
instruction selection etc.)

• Graphs are then translated into instructions with optimization decisions, and then
instructions are further optimised by the compiler.

Data Flow

Graph

Corresponding

Code

c d

2

3

4

1 * -

*

+

a b

5

ADR r4,a

MOV r1,[r4]

ADR r4,b

MOV r2,[r4]

MUL r3,r1,r2

ADR r4,c

MOV r1,[r4]

ADR r4,d

MOV r5,[r4]

SUB r6,r4,r5

MUL r7,r6,#5

ADD r8,r7,r3

a*b + 5*(c-d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 236

• Control code generation: representation of “if … then … else” high-level
language instructions (control data flow graphs):

if (a+b > 0)
x = 5;

else
x = 7;

• Processes linkage: combination of several code modules into a single

executable (code generation for passing parameters and results between

the modules).

• Code module ordering: code modules are placed in specific positions in the

memory space by using load map or linker flags.

• Simplification of the expressions (e.g. a*b+a*c = a*(b+c)), and dead code

elimination.

• Loop transformations in order to reduce loop overhead, to increase

opportunities for pipelining and parallelism, and to improve memory usage.

a+b>0 x=5

x=7

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 237

• Loop transformations:

 Loop unrolling: reduces loop overhead.

for (i=0; i<4; i++)

a[i] = b[i] * c[i];

for (i=0; i<2; i++)

a[i*2] = b[i*2] * c[i*2];

a[i*2+1] = b[i*2+1] * c[i*2+1];

 Loop fusion: combines two loops into one.

for (i=0; i<N; i++) a[i] = b[i] * 5;

for (j=0; j<N; j++) w[j] = c[j] * d[j];

 for (i=0; i<N; i++)

a[i] = b[i] * 5; w[i] = c[i] * d[i];

 Loop distribution: breaks one loop into two.

 Loop tiling: breaks one loop into a nest of loops.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 238

• Register allocation: choose register to hold each variable, and determine

lifespan of variable in a register.

• Instruction scheduling: in pipelined machines, execution time of one

instruction depends on the nearby instructions.

• Instruction selection: there are several ways to implement an operation

or sequence of operations, and the compiler has to find the optimum set

of instructions for the implementation.

• After the compilation the assembler translates assembly instructions to

binary machine instructions, by replacing opcodes and operands with

binary equivalents, and translating symbolic labels into actual addresses.

FI DI FO EI SR

FI DI FO EI SR

FI DI FO EI SR

Fetch instruction (FI), Decode instruction (DI), Fetch operands (FO),

Execute instruction (EI), Store results (SR)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 239

• The basic testing procedure contains three steps:

 Provide the program with inputs.

 Execute the program.

 Compare the outputs with the expected results.

• By using debuggers the program is executed on the development

processor in a stepwise manner. Whenever the program stops, the
user can examine values of various memory and register locations,

and compare them with the expected results.

• The use of instruction-set simulators gives us: control over time, set

breakpoints, look at register values, set values, and step-by-step execution.

• Types of software testing:

 Black-box testing: tests are generated without knowledge of program

internals.

 Clear box testing: tests are generated from the program structure.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 240

• Clear-box testing requires:

 Controllability: ability to cause a particular internal condition to

occur.

 Observability: ability to see the effects of a state from the outside.

• Clear-box testing generally tests selected program paths:

 Control program to exercise a path.

 Observe program to determine if the path was properly executed.

 Branches and loops testing: tests all possible conditions.

• Black-box testing is made from the specifications (not from the code):

 By selecting inputs from the specifications and determine the

required outputs.

 By generate random tests and determine the appropriate outputs.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 241

• Emulators support debugging of the program while it is executed on the

target processor.

• An emulator typically consists of the a debugger coupled with a board

connected to the development processor via a cable. The board consists

of the target processor plus some support circuitry.

• In in-circuit emulators the board has the capability for connection with the

real embedded system.

• Such emulators enable the developers to control and monitor the program’s

execution in the actual embedded system.

• They can be quite expensive if they run at real speeds.

Emulator

Debugger

Development processor

Device programmers

are used to download

a binary program from

the development

processor’s memory

into the target

processor’s memory.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 242

• The real-time operating system (RTOS or RT kernel) is a layer of

software providing low-level services to the application layer (set of
software processes executed on the processor).

• It is responsible for the sharing of the central processing unit amount

the executed processes (scheduling), according to the applied policy.

• Also, it is responsible for the sharing of the memory resources.

• Provides the software required for servicing various hardware

interrupts as well as device drivers for driving the peripherals of
the system (memory controllers, I/O devices etc.).

• Handles the software interrupts generated through system calls.
The operating system provides to the application software an

interface to the hardware through the system-call mechanism

(implemented with ISRs – Interrupt Service Routines).

Real-time operating system (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 243

Real-time operating system (cont’d)

• RTOS can have two types of operation: non-preemptive and preemptive.

• In non-preemptive operation (that is not used much in RT applications), each task

explicitly give up control of the CPU. A new task will gain control of the CPU only when

the current task gives up the CPU.

• In preemptive operation, the RTOS itself ensures that the highest-priority task ready to

run is always given control of the CPU.

• Asynchronous events (for changing the CPU control) are handled by ISRs. Upon its

completion an ISR invoke the RTOS, which decides to run the more important task.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 244

A system task may be in one of three states: running (currently executing),

ready to execute or blocked (waiting). A task may not be able to execute until, for

example, its data has arrived. Once its data arrives, it moves to the ready state.

Real-time operating system (cont’d)

NEW READY RUNNING EXIT

BLOCKED

Data ready

No highest

priority task is

ready

Needed resource
is unavailable

(highest priority

task is ready)

End of waiting

Release

RTOS state diagram

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 245

Real-time operating system (cont’d)

• Some desirable characteristics of an RTOS are:

 Small kernel size.

 Fast interrupt service (in general high performance).

 User defined scheduling policy.

 Support used language and microprocessor.

 Compatibility with the used tools (compiler, assembler, linker, debugger).

 Provision of the services need in the specific application.

 Easy integration to our system.

 Technical support.

 Licensing issues.

• RTOS examples:

Commercial Open source

VxWorks eCOS

Embedded Linux RTLinux

Solaries Nut/OS

OS-9

Windows CE

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 246

• There are several issues making different the software synthesis
for embedded systems, such as the different types of used
processors, the strong time constraints, the limited amount of
available memory, the interaction with the hardware.

• Efficient compiler support is needed to perform the required code
optimisations.

• Test generators, debuggers and simulation/emulation tools and
platforms, are used in order to ensure the correctness of the
developed software.

• Very often the application is not based on a general purpose
operating system, so an application-specific RTOS or an RT
kernel has to be integrated with the software.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 247

3e. Power optimization in embedded
systems

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 248

Power consumption in embedded systems

• Embedded systems design consists of realizing a desired functionality

while satisfying some design constraints such as performance

(throughput, latency), size (silicon area in chip design), power

consumption and cost.

• In recent years, the design trade-off of performance versus power

consumption has received much attention, mainly due to the presence

of large number of mobile systems that need to provide services with

the energy releasable by a battery of limited weight and size.

• Recent design methodologies have addressed the problem of power

optimization design, aiming to provide system realization while

reducing its power consumption.

• When considering the digital part of an embedded system, we can

distinguish three major types of units consuming significant power:

computation units, communication units and storage units.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 249

• Since software does not have a physical realization, we need to

analyze the impact of embedded software execution on the system’s

power consumption.

• Choices for software implementation affect the power consumption

of embedded systems.

• For example, software compilation affects the instructions used by

the computing elements, each one bearing a specific energy cost.

• Software storage and data access in memory also affects power

balance, and data representation (e.g. encoding) affects power

consumption of communication resources (e.g. buses).

• Power optimization techniques can be applied at all major design

phases: modeling, system-level synthesis, and lower-level synthesis

(hardware synthesis, software generation).

Power consumption in embedded systems (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 250

• Average power consumption in digital CMOS circuitry:

 Pdynamic is the power consumed due to charging and

discharging of the capacitive loads, and is given by

the product of the load capacitance, the square of the

supply voltage and the frequency.

 Pshort-circuit is the power consumed due to short-circuit currents

between the supply rails during switching.

 Pleakage is the power consumed due to leakage currents.

 Pstatic is the static power consumption occurred in some CMOS

implementations.

• The first two components are strongly dependent on the transition

activity of the circuitry (switched capacitance).

CMOS power consumption

Static CMOS gate

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 251

• The power consumption is reduced by lowering the supply voltage.

However, in this case the delay will be increased.

• The reduction of the load parasitic (switching) capacitance may lead to

simultaneous improvement of power consumption and delay of a logic

block. However, the driving capability of the subsequent block will be

reduced, increasing its delay.

• Due to the fact that power and delay are conflicting metrics, our design

goal has to be the trade-off between speed and power.

• The power consumption is reduced by applying slower frequency. Then,

the circuit will become slower, and we have to increase parallelism in

order to compensate the speed loss (with an area overhead).

s: switching activity factor

CMOS power consumption (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 252

• The most abstract representation (model) of a system is the function

it performs.

• The choice of the algorithm for performing a function (whether

implemented in hardware of software) affects the system’s power

consumption.

• In addition, the choice of the parameters for the implementation of an

algorithm (e.g. word-width) is a degree of freedom that can be used to

reduce the power consumption.

• After specification/modeling, the designer take the key decisions on

the system architecture (what is the hardware support required for

implementing the functionality with the selected algorithm).

• Architectural choices such as type of used processors, use of specific

circuits for power-hungry tasks, may have significant influence on the

system’s power consumption.

Power optimization at algorithmic level

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 253

• Assume the existence of a library with multiple algorithms for computation

of common functions, and that the power and performance of the library

elements are pre-estimated for a given generic architecture (i.e. processor).

• For each function call in the specification, we can select the algorithm that

minimizes power consumption while satisfying performance constraints.

• Also, the data structure have impact on the power consumption (e.g.

number representation in DSP systems).

• Computational energy can be reduced by applying data-flow

transformations in DSP algorithms.

• Storage energy can be reduced if we consider that results computed early

are needed much later in time, and thus the storage requirements are

increased (we have to exploit locality).

• Also, a highly parallel computation with significant communication between

parallel threads requires a complex and power-hungry communication

infrastructure.

Power optimization at algorithmic level (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 254

Power optimization at algorithmic level (cont’d)

• Computational kernels are the inner loops of a computation, where the

most time is spent during execution.

• Profiling an algorithm execution flow under typical input streams can

easily detect computational kernels. Profiling data are collected from

the executable specification.

• To substantially reduce power consumption, each computational kernel

is optimized as a stand-alone application and implemented on dedicated

hardware that interfaces with the less frequently executed sections of the

algorithm.

• During system operation, when the computation is within a computational

kernel, only the kernel processor is active (and dissipates power), while

the rest of the system can be shut down. Otherwise,the kernel processor

is disabled.

• Performing a computation on dedicated hardware is usually one or two

orders of magnitude more power efficient than using a general purpose

processor.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 255

Power optimization at algorithmic level (cont’d)

• Approximate processing: the key idea here is that power
consumption can be drastically reduced by allowing some
inaccuracies in the computation (e.g a video user may be
satisfied with low video quality when watching a television
show, but they may require high quality when reading a
page on screen).

• Approximate computation algorithms can adapt the quality
of service to power constraints and user requirements.

• Certain operations may be implemented with limited accuracy
to reduce energy costs. For example, a cos(x) function can
be approximated as a Taylor expansion.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 256

Power optimization at the system level

• The balance between software and hardware can vary
widely, depending on the application.

• Even though dedicated hardware is more energy efficient
than software running on processors, the latter has many
compensating advantages, such as flexibility, ease of late
debugging, low-cost, and fast design time.

• Example: a processor can easily implement a FIR filter by
performing a sequence of multiplications and additions.
On the other hand, a custom hardware architecture for FIR
filtering can be created with just an adder, a multiplier and
few registers, which results in quite lower power
consumption.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 257

Power optimization in application-specific circuits

• The most direct way to reduce power is to scale down the supply voltage.

Unfortunately, CMOS circuits get slower as the supply voltage decreases.

• Under these conditions, a good approach to reduce power consumption is

to make a circuit faster than its performance constraint, and then decrease

the supply voltage until the constraint is matched again (power-driven

voltage scaling).

• To make the circuit faster, techniques for high-performance computation

such as parallelization and pipelining are used.

• The limitation in the pipelining technique is the registers overhead.

• In parallelization speedup technique, the duplication of a part of the

datapath to allow more that one computation at the same time, imposes

large area overhead.

• Another limitation of power-driven voltage scaling is that it becomes less

effective as technology scales down, due to the fact that voltage supplies

are moving to lower levels reducing the room available for voltage scaling.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 258

Power optimization in application-specific circuits (cont’d)

• The power-driven voltage scaling can be extended by allowing multiple

supply voltages on a single system.

• The key idea is to save power in noncritical functional units by powering

them with a down-scaled supply voltage. In this way throughput remains

unchanged, but the overall power consumption is reduced.

• If we allow multiple clock domains on a single system, we can clock

noncritical subsystems at slower frequencies, thereby saving significant

power without reducing overall system performance.

• If a system component is idle (i.e. it is not performing any useful work), we

can set its clock frequency to zero and nullify dynamic power consumption.

This technique is known as clock-gating.

• Reduction of switching activity: One way is to reduce the number of

operations (i.e. by transforming the dataflow graph of a computation

comprising of elementary operations), and a second way is to increase

the correlation between successive patterns at the input of functional units.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 259

• The constraint on execution time is 3 clock cycles, the resource constraints are:

2 adders, 1 multiplier, 1 comparator.

• (b) and (c) show two schedules compatible with the resource constraints.

• Observe that additions 1 and 3 share one of the operands. If we perform both additions

with the same adder, its average switching per operation will be low, because one of the

operands remains the same.

• In the schedule (b) it is not possible to implement additions 1 and 3 with the same adder,

because the two operations are scheduled in the same control step. On the other hand,

the schedule (c) allows sharing, and it leads to a more energy-efficient implementation.

Power optimization in application-specific circuits (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 260

Power optimization in processors

• Even though dedicated computation units are very energy efficient, they

are not flexible.

• In many cases, flexibility is a primary requirement, either because initial

specifications are incomplete or because they change over time or

because computation units must be reprogrammable to some degree.

• From the energy-efficiency viewpoint, processors suffer from three main

limitations:

 They have an intrinsic power overhead for instruction fetch and

decoding.

 They tend to perform computations as a sequence of instruction

executions, and cannot take advantage of algorithmic parallelism.

 They can perform only limited number of elementary operations,

as specified by their instruction set, and thus they must reduce any

complex computation to a sequence of elementary operations.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 261

Power optimization in processors (cont’d)

• In order to be more energy efficient many processor families have “low-

power” versions with reduced supply voltages. Supply voltage reduction

requires some adjustments in device technology and in circuit design

(critical path redesign etc.), in order to keep performance at a desired level

and ensure correct functionality.

• The energy efficiency in processor design can be enhanced by using the

clock-gating technique in order to avoid useless switching activity in idle

units.

• Specialized instructions are often used as a power and performance

enhancing technique. The basic idea is to provide few specialized

instructions and the required architectural support that allow a processor

to execute in a more efficient way.

• For example in some RISC processors variables and intermediate results

of data-processing instructions can be stored in registers avoiding repeated

transfers from/to memory.

• Compilers in such processors handles the optimization of the registers’ use

(more complex compilers).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 262

Power optimization in ASIPs

• When designing a processor for a specific application, energy (and

performance) optimization can take advantage from the knowledge of

the target application to obtain a highly optimized specialized processor.

• ASIPs (application specific instruction-set processors) are a compromise

solution between fixed processor cores and dedicated functional units.

• The energy efficiency in ASIPs is based on the fact that they use a reduced

number of instructions (able to support the target application).

• The target application is first compiled for a complete instruction set, then the

executable code is profiled, and instructions that are never used or that can be

substituted by others are dropped from the application specific instruction set.

• After that the processor with the reduced instruction set is synthesized and the

code is executed on it.

• The instruction set reduction also leads in simpler decoding and execution

units, which enhance the energy efficiency.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 263

Power optimization in memories

• During the algorithmic design, the designer has to improve locality i.e. the results
of a computation should be “consumed” by subsequent computations as soon as
possible, thereby reducing the need for temporary storage, thus reducing the
memory accesses.

• Also, the designer has to use efficient data representations that reduce the
amount of inessential information stored in memory (i.e. data compression).

• In some specific processors variables and intermediate results of data-processing
instructions can be stored in registers avoiding power consuming repeated
accesses to memory (register allocation).

• From the architectural point of view, in order to reduce the power consumed due
to memory accesses we can exploit the concept of memory hierarchy.

• Low hierarchy levels are made of small memories, close to computation units and
coupled with them, while high hierarchy levels are made of larger memories far
from computation units and shared.

• Each memory level can be partitioned into several independent blocks (banks)
in order to reduce the cost of a memory access in a given level.

• However, memory partitioning leads to higher addressing complexity and area
overhead.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 264

μP
μP

Power optimization in memories (cont’d)

• The profile (obtained by instruction-level simulation) gives for each address in the

range, the number of reads and writes to the memory during the execution of the

target application.

• A small subset of the addresses is accessed very frequently. A power-optimal partitioned

memory organization consists of three memory cuts and a memory selection block.

• The larger cuts contain the top and bottom part of the range, while ‘hot’ addresses

are stored into a small memory.

• The average power in accessing the memory is decreased, because a large fraction

of accesses is concentrated on a small memory, and the memory banks that are not

accessed are disabled through chip select (CS).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 265

Power optimization in communication

• Communication is carried out over a set of metal wires (bus). The total

capacitance of wires supporting communication is much larger than the

average capacitance of local wires.

• Communication power can therefore be reduced by either scaling down the

voltage swing or reducing the average number of signal transitions.

• Swing reduction: We can decrease quadratically the power consumption by

reducing the voltage swing on the high-capacitance wires of a bus.

• Low-swing signalling is beneficial also for performance because it takes less

time for a signal to complete a small swing than a large swing.

• The trend in reducing voltage levels is limited by noise margins. The reduction

of noise margins affects the circuits reliability.

DRIVER RECEIVER
Wire of the bus

Swing =

V
DD

Lower swing Lower swing Swing =

V
DD

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 266

Power optimization in communication (cont’d)

• Signal encoding technique for power reduction on buses.

• The basic idea is to encode the binary data send through the communication

channel (bus) in order to minimize its average switching activity, which is

proportional to dynamic power consumption.

• The data from the source modules is encoded, transmitted on the bus and

decoded at the destination module.

• Buses have relatively large parasitic capacitance, so that the energy dissipated

in data transfers is significant and dominates the extra energy required to

encode and decode the signals at both sides.

• There are several low-transition activity encoding and decoding schemes (gray,

bus-invert, T0, adaptive etc.).

BUS

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 267

Power optimization at circuit level

• Static CMOS circuit design technique has a major low-power characteristic:

power is only consumed during output switching – no static power is dissipated

except leakage.

• Alternatively in some cases other logic styles can be used.

• For example logic styles based on pass transistors may be beneficial in

designing arithmetic circuits (adders, multipliers) due to their specific

characteristics such as reduced transistor count and compact layout.

• Transistor sizing: appropriate sizing of transistors in CMOS circuits can be

applied for minimizing the power consumption under a given delay constraint.

• Driving high capacitive loads (e.g. long wires) with proper drivers (inverter

chains).

NAND2 gate

A

B

B

B

AB

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 268

Power optimization at technology level

• Deep-submicrometer technologies and nanotechnologies are used
in order to reduce the physical (parasitic) capacitance and thus the
power consumption of CMOS circuits.

• Alternative technologies (Silicon-on-Insulator, SOI) and Multi-Chip
Modules (MCMs) fabrication for the same reason.

• Multiple threshold voltage technologies:

Assignment of low threshold voltages to critical paths to meet the
required frequency.

Assignment of high threshold voltages to the rest circuitry in order
to minimize leakage (subthreshold current).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 269

Power optimization in software

• Software execution corresponds to performing operations on hardware, as

well as accessing and storing data.

• Thus software execution involves power consumption for computation,

storage and communication.

• The energy cost of executing a program depends on its machine code and

on the corresponding processor architecture.

• Since the machine code is derived from the source code through compilation,

it is the compilation process that also affects energy consumption.

• The energy cost of machine code depends on:

 Type of operations.

 Number of operations.

 Order of operations.

 Way of storing data (addressing modes, use of registers vs. memory

arrays etc.).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 270

Power optimization in software (cont’d)

• The traditional compiler goal is to speed up the execution of the generated

code by reducing code size (which is related with latency in execution time).

• Executing machine code of minimum size consumes minimum energy, if we

neglect the interaction with memory and assume a uniform energy cost for

each instruction.

• The development of specific low-power compilers is still an open field for

research.

• Examples of compiler power optimizations are:

 Selective loop unrolling, which reduces the loop overhead.

 Instructions selection in order the execution of the code to access registers

which is much less energy consuming than accessing memory.

 Instruction scheduling (reordering) for low energy by reducing the interinstruction

effects that cause switching on the instruction bus, and in some other processor

units such as instruction decoder.

 Note that, the priority of scheduling an instruction is inversely proportional to the

Hamming distance from the currently scheduled instruction.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 271

Power optimization through RTOS

• The heart of any RTOS is the task scheduler and apart from satisfying
the real-time constraints, has to be energy-aware.

• Energy-efficient task scheduling is called dynamic power management
(DPM) and it is a design methodology that dynamically reconfigures an
embedded system to provide the requested services and performance
levels with a minimum number of active components.

• DPM contains a set of techniques that achieve energy-efficient
computation by selectively turning off (or reducing the performance
of) system components when they are idle (or partially unexploited).

• A power manager implements a control procedure based on some
observations and/or assumptions about the workload of the system.

• An example of power management is the shutdown of a component in
laptops after a fixed inactivity time, under the assumption that it is likely
that the component will remain idle if it has been idle for a specific period.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 272

Power optimization through RTOS (cont’d)

• For clocked hardware units, energy can be saved by reducing the clock
frequency (or by stopping the clock), or by reducing the supply voltage
(or by powering off the unit).

• Power shutdown is a solution that eliminates all sources of power
consumption, however a major disadvantage is the wake-up recovery
time, which is higher than in clock-gating solution.

• There are several reasons for migrating the power manager to software
(RTOS):

Software power managers are easy to write and to modify.

The RTOS can manage computational, storage and I/O tasks
of the system.

• Recent power managers include workload predictive techniques
and they can adapt the clock speed and the supply voltage in several
components of the system.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 273

• The StrongARM SA-1100 processor is an

example of power manageable component, and

has three modes of operation: run, idle, sleep.

• Run mode is the normal operating mode (every

on-chip resource is functional). The chip enters

run mode after successful power-up and reset.

• Idle mode allows a software process to stop the

CPU when not in use, while continuing to monitor

interrupt requests. In idle mode, the CPU can be

brought back to run mode quickly when an

interrupt occurs.

• Sleep mode offers the greatest power savings,

and consequently the lowest level of available

functionality.

• In the transition from run or idle, the processor

performs shutdown. In a transition from sleep to

any other state, the chip performs a complex

wake-up sequence before it can resume normal

activity.

Power optimization through RTOS (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 274

Conclusions

• In recent years, power consumption is one of the most critical
design parameters, mainly due to the presence of large number
of mobile systems.

• Embedded systems design aims at achieving a balance between
performance and energy efficiency.

• Power optimization techniques can be applied in both hardware
and software domains and in all levels of the design hierarchy:
algorithmic, system, circuit, technology.

• In addition, energy-efficient design must target all types of
resources that can be sources of power consumption: computation,
communication and storage resources.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 275

4. Verification and Co-simulation

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 276

Co-simulation

Functional

simulation

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 277

Verification is the process of determining that a design is correct
and should include:

• Specification verification (functional simulation): checks if
the developed system model satisfies the initial functional
specification of the system. It is a solution to deal with high
complexity, i.e. to move to higher levels of design abstraction
for the system’s functional verification.

• Implementation verification: checks if a lower-level model
resulted after one or several refinement steps, correctly
implements a higher-level model. This can be performed
by co-simulation at several levels of abstraction and by
prototyping (hardware-software prototyping platforms)
before the final stage of the implementation.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 278

• The specification verification is a process that proves
mathematically that several properties of the system are true
or that the functionality of the system is correct, based on a
developed specification model.

• After the initial specification of functionality and a specific set of
constraints (time, power etc.), a more formal specification of the
functionality, based on some modeling concept (e.g. FSMs or
Data-flow models) is generated.

• Then, this model (system’s executable specification) that can be
in Matlab, C, UML etc., is simulated in an execution environment
with a proper test bench (inputs to the system), in order to check
the correctness of the initial system functionality.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 279

• The simulation process occupies an increasing part of the total
development time for real-time systems and today it is often the
bottleneck in the development process.

• The increase in time for the simulation stage is mainly
dependent on three parameters:

 Increased software complexity.

 Increased hardware complexity.

 Complex interaction between hardware and software.

• To shorten the development process it is a key demand to
decrease the simulation and in general the verification time.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 280

• The simulation processes for software and hardware design,
have traditionally been two completely separated activities within
the total design process.

• In traditional design of a mixed (hardware-software) project,
software is typically developed after the hardware design has
begun to stabilize and prototypes are available for integrating
and testing the software and the hardware.

• The hardware-software integration and simulation is the most
time consuming part of the project, due to the fact that there is
limited observability of the operation of the hardware as the
software executes and inability to control all of the elements of
the design (especially the peripherals running synchronously
with a microprocessor).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 281

• In the absence of target hardware, verification of software code was mostly

managed using development tools such as debuggers and simulators running

in a host-machine environment.

 Native compiled software (NCS): the software is compiled for the host

processor and then executed on it. Debugging of NCS can then be done

by the debug tools of the host processor.

 Emulation of the target processor instruction set (Instruction-Set

Architecture - ISA model). Software verification is performed through

instruction-set simulation.

 In both cases the software has to be complemented with additional code

that simulates the absent hardware components. Software components

called stubs are used to simulate the required interfaces.

• Another method (more realistic and more accurate) for software verification

is to use existing (incomplete) processor hardware as a prototype. Incomplete

hardware can be processor development boards or FPGA prototyping boards

(drawback: software is verified late in the design process).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 282

• On the hardware side typically the designer is interested in verification

of the interaction (accesses, handshaking, interrupts, signals) between

software and specific hardware components.

• One approach is to use a testbench in which the hardware module to be

simulated is instanced as a component.

• By using models of the surrounding components (e.g CPUs, memories)

stimulation inputs can be generated, thus enabling simulation of the

responses according to specification.

VHDL

testbench

CPU

RAM
Hardware

module

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 283

• Models of surrounding components is difficult to be implemented and

usually they are not available.

• A solution is to use specific tools (often custom and application-

depended) that produce input files (force files) for the VHDL testbench.
These files are produced according to the specification.

• These force files can be used, for example, to fill the memories of the
hardware module to be simulated with the valid contents or to produce

the proper control signals, “substituting” the processor running the
embedded software.

• Finally, the system hardware can be verified by prototyping (FPGA-
based hardware-software prototyping platforms) before the final stage

of the implementation.

• The major advantage when using FPGAs is the ability to make fast

changes compared to ASIC, and the disadvantage is that the timing

is much slower than that of the ASIC.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 284

• The co-simulation problem: How to simulate hardware and
software components at the same time.

• Difficulties:

Different simulation platforms are used

Software runs fast while hardware is relatively slow; how
to run the system simulation as fast as possible, and keep
the two domains synchronized.

Slow models provide full details and produce accurate
results, while fast models do not produce enough timing
information and simulation is less accurate.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 285

• Co-simulation has been introduced as an alternative to the use
of testbenches.

• The target is to couple a software execution environment with a
hardware simulator.

• Co-simulation allows two engineering groups to “talk” together.

• Co-simulation allows earlier integration of the system and
provide a significant performance improvement for system
verification.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 286

• In co-simulation approaches:

 Software is executed on a simulator running on the host
processor (e.g. instruction-set simulator by using an instruction-

set architecture – ISA model of the processor) or on the actual
hardware platform.

 An emulation (model) of the processor is used or its actual

hardware platform.

 Several methods are used for its interface with the hardware part

of simulation.

 A kernel is used to co-ordinate the communication between the

two parts of simulation.

Processor

Model

Software

Execution

Environment

Co-simulation

Kernel
Hardware

Simulator

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 287

1st approach: Use a detailed (gate-level of RTL-level) processor model

• Processor components (memory, data path, instruction decoder etc.) are

discrete models that execute the embedded software.

• The software is running on the hardware model of the processor, i.e. it is the

event driver of the VHDL model.

• Interaction between processor and other components is performed using

event-driven simulation capabilities of the hardware simulator.

• The co-simulation kernel is a controlling unit (implemented in software) that

co-ordinates the interface/communication between the two parts of simulation.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 288

2nd approach: Use a bus model of the processor (cycle-based simulation)

• The bus model of the processor only simulates the activity of bus interface

of the processor without executing the software

• The bus model converts the software operations of the processor to I/O

operations. The events to be handled by the VHDL simulator are reduced

to the ones of the processor I/O signals.

• The software is executed on an instruction-set model of the processor (e.g

ARMulator for ARM processors family) and provide timing information in clock

cycles (clock cycles number required for a given sequence of instructions).

• Less accurate but faster simulation model.

Host: processor

running the

simulation

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 289

3rd approach: Use an instruction-set model of the processor

• There is no hardware model of the target processor. The software is executed

on an instruction-set model (usually written in C).

• The execution of the software on the instruction-set model provides interface

information (including timing) needed for co-simulation.

• Simulation is fast, but timing accuracy depends on the interface information.

• Example: The Seamless tool (kernel) implements an interface between ISS

model and the HDL simulator that executes the hardware models of the

peripherals.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 290

4th approach: Use a compiled model of the processor

• There is no hardware model of the target processor. The software is

compiled in native code for the host processor.

• The native code models are fast models translating the embedded software

into native code for the processor doing the simulation (e.g. code for a DSP

can be translated into Sparc assembly code for execution on a workstation).

• The execution of the native code provides interface information (including

timing) needed for co-simulation.

• Simulation is very fast, but timing accuracy depends on the interface

information.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 291

5th approach: Use the processor’s physical hardware or emulate the
processor by FPGA prototyping

• If the processor exists in hardware form, the physical hardware can often be

used to model the processor in the simulation.

• Alternatively, the processor could be modeled (emulated) using an FPGA

prototype.

• Advantage: simulation speed.

• Disadvantage: Availability of the physical processor or availability of the

FPGA-based prototype.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 292

• The processor that executes the embedded software can be modeled
with the following approaches:

 Detailed processor models supported by hardware simulators.

 Bus models that only simulate the activity of bus interface of the
processor without executing the software.

 Instruction-set (IS) models usually implemented in a C program
that interprets the embedded software.

 Compilation of the embedded software into assembly code for
the processor doing the simulation.

 Physical processor or FPGA-based prototyping of the processor.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 293

• In the three of the five previous approaches a program running
on the host, which simulates the software component, interacts
with the hardware simulator.

• Main problems:

 Providing timing information across the boundaries.

 Coupling of the two domains.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 294

• There is an attribute in VHDL that allows parts of
the code to be written in languages other than
VHDL.

• These parts of the code, named VEC procedures
(VHDL emulation of C procedures), perform data
conversion and call the C functions.

• Disadvantages:

 The C program has to be re-organised as C functions that can
be called by the VEC procedures.

 No concurrent simulation is possible. This problem can be
solved with the communication of the simulator with the C
programs through a software bus (that can be a modelled
component in the simulation tool).

(master)

C simulator

(slave)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 295

• The basic problem of co-simulation is how to simulate hardware and

software together so that simulation to be fast and accurate.

• The existing simulation techniques have to be extended to combine

simulation of hardware and software components.

• Different simulation platforms and techniques are used.

• Software runs fast while hardware simulation is relatively slow. So,

the problem is how to run the system simulation as fast as possible

and keep the two domains synchronized.

• Slow models provide full details and produce accurate results while fast

models do not produce enough timing information and the simulation is

not accurate.

• The verification of an embedded system can be also performed by

prototyping (hardware-software prototyping platforms) before the final

implementation. This issue is the subject of a next lecture.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 296

5a. Reduced instruction set computing
(RISC) machines

Department of Computer and Communication Engineering

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 297

• The primary function of a CPU is to execute the instructions fetched from

the main memory.

• An instruction tells to the CPU to perform one of its basic operations

(arithmetic, logic, transfer of data from/to memory etc.).

• The control unit interprets (decodes) the instructions to be executed and

tells to the other components what to do.

• The CPU includes a set of registers which are temporary storage devices

for holding intensively used data and intermediate results.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 298

• The datapath of the processor consist of the circuitry for transforming data
and for storing temporary data (ALU and registers).

• The ALU is capable to transform data through operations such as addition,
subtraction, logical (AND, OR, invert), shifting, and to generate status signals
(stored in the status register) indicating particular data conditions (e.g. when
an addition generates a carry).

• Registers are capable to store temporary data that may include data from the
memory not yet sent to the ALU, data coming from the ALU that will be needed
for later ALU operations or will be sent back to memory, and data that have to
be moved from one memory location to another.

• The control unit consists of circuitry for controlling the flow of data in the datapath
according to the executed instructions. Contains the program counter that holds
the memory address of the next instruction, and the instruction register to hold
the fetched instruction’s address.

• Memory is used for storing program (instructions) and data and can be on-chip
(faster access) or off-chip. To reduce the access time a local copy of a portion of
memory may be kept in smaller, fast, on-chip and expensive cache memory.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 299

• A CPU can only execute machine instructions, and each CPU has a set of

specific machine instructions (instruction set) which is able to recognise

and execute.

• A machine instruction is represented as a sequence of bits which have to

define: what has to be done (operation code), to whom the operation

applies (source operands), where does the result go (destination

operands), and how to continue after the end of the operation.

• The representation of a machine instruction is divided into fields, each field

contains one item of the instruction specification (opcode, operands etc.),

and the fields are organised according to the defined instruction format.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 300

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 301

• Machine instructions are of four types:

 Data transfer between memory and CPU registers.

 Arithmetic and logic operations.

 Branch instructions.

 I/O transfer instructions.

• Important aspects in instruction set design:

 Number of addresses.

 Types of operands.

 Addressing modes.

 Operation types.

 Instruction format.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 302

• Branch instructions determine the address of the next program instruction,

based probably on datapath status signals.

• There are three categories of branch instructions:

 Unconditional jumps determine the address of the next instruction.

 Conditional jumps do the same thing only if a condition is true.

 Call and return instructions: a call instruction, in addition to the indication

of the address of the next instruction, saves the address of the current

instruction so that a subsequent return instruction can jump back to the

instruction immediately, following the most recent invoked call instruction.

• The instructions’ operand field specifies the location of the actual data that takes

part in an operation. Source operands serve as input to the operation, while a

destination operand stores the output.

• The number of operands per instruction varies among processors, but even in

the same processor the number of operands per instruction may vary depending

on the instruction type.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 303

• The data location in the operand field are indicated through several

addressing modes. The main processors’ addressing modes are:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 304

• Each instruction is performed as a sequence of steps, and

the steps corresponding to one instruction are referred as

instruction cycle:

 FI: move the next instruction from the memory into

the instruction register.

 DI: determine what operation is represented by the

fetched instruction.

 FO: move the instruction’s operand data from the

memory into the appropriate registers (includes the

calculation of the operand address).

 EI: move of data from the appropriate registers to the

ALU, execute the operation and feed the results to an

appropriate register.

 SR: write the content (result) of the register into the

memory.

Fetch Instruction

Decode Instruction

Fetch operands

Execute Instruction

Store results

FI

DI

FO

EI

SR

Typical instruction cycle

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 305

• Pipelining is used to increase the instruction throughput of a processor.

• The instruction cycle contains several operations that are executed

successively.

• This implies much hardware, but only a part of this hardware works at a given

moment, dependent on the stage of the instruction cycle that is executed.

• With pipelining, the execution of multiple instructions is overlapped.

• Different parts of the hardware, work for different instructions at the same time

(no additional hardware is required, except of stage registers).

• Machine cycle (or clock cycle) is the time required for moving an instruction

from one stage of the pipeline to the next (longest time required for data to

move from one stage register to the next).

• The execution of an instruction takes several machine cycles as it passes

through the pipeline.

SR SR SR

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 306

Example 1: Five stage pipeline execution in general purpose processor

FI DI FO EI SR

FI DI FO EI SR

FI DI FO EI SR

FI DI FO EI SR

Clock cycle 1 2 3 4 5 6 7 8

Latency: 5 cycles

Throughput: 1 cycle

Fetch Instruction

from the memory

Decode Instruction

Move operands

from memory to

register bank

Combine operands

to ALU (execute

instruction)

Store result

to memory

FI

DI

FO

EI

SR

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 307

Example 2: Six-stage pipeline execution for load-store (RISC) architectures

Clock cycle 1 2 3 4 5 6 7 8

FI DI FOR EI WBMEM

FI DI FOR EI WBMEM

FI DI FOR EI WBMEM

Fetch Instruction

from the memory

Decode Instruction

Access required

operands from

register bank

Combine operands

to ALU (execute

instruction)

Access memory to get

or put a data operand

FI

DI

FOR

EI

MEM

Write result

back to register

bank

WB

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 308

Deco-
der

IF ID IE MEM WBSR SR SR SR

Example 3: Five stage pipeline execution (MIPS processor)

In the first stage, the instruction is fetched from memory (IF). It is then decoded and its operands

are read from the registers (ID). Next, it is executed using the operands (EX) or in the case of load

and store instructions, a memory address is calculated. In the next stage (MEM), load and store

instructions access memory using the computed address, either retrieving a value from memory

(load) or storing a value to memory (store). Registers are updated with the result of execution (WB).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 309

• Pipeline hazards are situations that prevent the next instruction in

the instruction stream from executed during its designated cycle.

• In that case the instruction is stalled.

• All the instructions later in the pipeline are also stalled, and no new

instructions are fetched. The instructions earlier than the stalled one

can continue.

• There are three type of hazards:

 Structural hazards.

 Data hazards.

 Control hazards.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 310

FI DI FO EI SR

FI DI FO EI SR

FI DI FO EI SR

Clock cycle 1 2 3 4 5 6 7 8

stall

• Structural hazards occur when a certain resource (memory or functional

unit) is requested by more than one instruction at the same time.

• In order to avoid them some resources are duplicated or pipelined in order

to support several instructions at a time.

• A classical way to avoid hazards at memory access is by providing

separate data and instruction caches.

• The first instruction fetches in the FO stage an operand from memory.

The memory does not accept another access during that cycle.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 311

• Data hazards occur when an instruction needs the result produced by another

instruction, but this result has not yet been generated.

• Instruction 1: MUL R2, R3 R2 R2 x R3

• Instruction 2: ADD R1, R2 R1 R1 + R2

• Before the execution of its FO stage, the ADD instruction is stalled until the MUL

instruction has written the result into R2.

• Time penalty of data hazards can be reduced by feedback the ALU result to the ALU

input (a multiplexer can be used). If the hardware detects that the value needed for

the current operation is the one produced by the previous operation it selects the

forwarded result as ALU input, instead of the value from register or memory.

FI DI FO EI SR

FI DI FO EI SR

Clock cycle 1 2 3 4 5 6 7 8

stallstall

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 312

• Control hazards are produced by branch instructions.

• The instruction following the branch is fetched, because before the DI

stage of the branch instruction is finished it is not known if a branch will

be executed. Later the fetched instruction is discarded.

• After the FO stage of the branch instruction, the address of the target is

known and it can be fetched.

Branch FI DI FO EI SR

Clock cycle 1 2 3 4 5 6 7 8 9

FI DI FO EI SRFI stall

FI DI FO EI SR

Target

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 313

• Branch instructions can dramatically affect the pipeline performance.

• Such instructions are very frequent in current programs (20 - 30%), so it is

very important to reduce the delay penalties produced by branches.

• The idea in order to cope with the branch delays is to let the CPU do some

useful work during the delay cycles caused by the branch instruction.

• It is duty of the compiler to find an instruction which can be moved from its

original place into the branch delay slot after the branch and which will be

executed regardless of the outcome of the branch.

Program produced by compilerInitial program

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 314

• If the compiler is not able to find an instruction to be moved after the branch

(into the branch delay slot), a NOP instruction (an instruction that does nothing)

has to be placed after the branch (the delay penalty will be the same).

• Statistics show that sophisticated compilers are able to find such an instruction

for 60-80% of the branches.

• It is important to apply correct branch prediction to improve performance.

• Based on the predicted outcome, the respective instruction can be fetched,

as well as the instruction following it.

• If, after the execution of the branch condition, it turns out that the prediction

was correct, execution continues.

• On the other hand, if the prediction is not fulfilled, the fetched instructions

must be discharged and the correct instruction must be fetched.

• There are dynamic prediction strategies (that take into account the history

of conditional branches) and static prediction strategies (that do not take

into consideration the execution history and use heuristics).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 315

• Several instruction set architectural models have existed over the last three
decades.

• First, CISC (complex instruction-set computers) with variable instruction formats,
numerous memory addressing modes and large number of instruction types.

• The CISC philosophy was to create instruction sets leading in program formats
close to those of high-level language programs, in order to simplify the compiler
technology.

• RISC (reduced instruction-set computers) philosophy is based on uniform
instruction lengths, limited addressing modes and reduced number of operation
types.

• RISC concepts allow the design of machines to be more easily pipelined,
improving the speed of the processor.

• VLIW (very long instruction word) architecture model allow multiple instructions
handling per clock cycle. A fixed number of instructions are included in a single
long instruction, and the compiler has the responsibility for the parallel execution
of the instructions.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 316

• The increased use of high-level languages (HLLs) is one of

the reasons leaded to the development of complex processor

architectures.

• Due to the fact that these languages contain complex control

structures such as if, while and case, a significant semantic

gap has been created (between HLLs and assembly), making

the construction of modern compilers quite difficult.

• A popular approach to solve the problem was the inclusion of

new (complex) instructions at the assembly/machine language

levels in order to handle high-level instructions (such as multiple

branches, i.e. case), and of special addressing modes for

procedure calls, and writing/reading values in the memory.

• These complex instructions and addressing modes make use

of the microcode before their execution by the processor’s

hardware (CISC machines). This may lead to the reduction of

the processor speed.

• On the other side, RISC machines simplify the instruction set,

and avoid the microprogramming level by executing their simple

instructions directly to the hardware. However, this requires

more complex and efficient compilers.

Machine language level

Microprogramming level

Digital logic level
(hardware)

Assembly language level

High-level language level

Compiler

Assembler

Microcode

Direct execution

RISCs

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 317

• The instruction set is limited and includes only simple instructions. The

goal is to create an instruction set containing instructions that execute

quickly.

• Most of the RISC instructions (for data processing) are executed in a single

machine cycle (after fetching and decoding). There is pipelined operation

without memory reference.

• The simplicity of the RISC instructions make them hardwired, while

CISC architectures have to use microprogramming to implement

complex instructions.

• Having simple instructions results in reduced complexity of the control unit

and the data path, and as a sequence the processor can work in high clock

frequency (small cycle time or clock period).

• The pipeline processing is used efficiently due to the fact that the instructions

are simple and have similar execution times.

FI DI EI

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 318

• RISC machines are based on a load-and-store architecture: only LOAD

and STORE exchange data with the memory, and all other instructions

operate only with registers (register-to-register instructions).

• Thus, only the few instructions accessing the memory need more than

one cycles (two cycles after fetching and decoding):

• These instructions (LOAD and STORE) use only few addressing

modes, which are usually: direct, indirect, register indirect.

FI DI CA TR

CA: calculate operand address

TR: transfer operand from or to memory

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 319

• The delay-load problem: LOAD instructions (similar to the STORE

instructions) require memory access and their execution cannot be

completed in a single clock cycle. However, in the next cycle a new

instruction is started by the processor.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 320

• It is responsibility of the compiler to find an instruction for execution

after the LOAD instruction that does not need the loaded value, in

order to avoid stalling.

• For the following sequence the compiler has generated a NOP instruction

after the LOAD, because there is no instruction to fill the load-delay slot.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 321

• RISC instructions are of fixed length and uniform format.

• This makes the loading and decoding of instructions simple and fast, and it is
not needed to wait until the length of the instruction is known in order to start
decoding the following one.

• Decoding is simplified because opcode and address fields are located in the
same position for all instructions.

• Example - Basic instruction format of RISC I:

• ADD (common instruction):

 If A=0 (register direct mode) the first operand is taken from the SOURCE
register, the second is taken from a register defined by the 5 LSBs of the
OFFSET field, and the result is stored in the DEST register.

 If A=1 (immediate mode) the second operand is a constant of 13 bit
(OFFSET filed).

8

OPCODE DEST SOURCE A OFFSET

5 5 1 13

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 322

• RISC machines contains a large number of registers.

• Variables and intermediate results can be stored in registers and do not
require repeated loads and stores from/to memory (reduce number of LOAD
and STORE instructions). The number of registers may be up to 500 !

• Traditionally, when a new procedure is called, the registers have to be saved
in memory since they contain values of variables and parameters of the calling
procedure. After the returning to the calling procedure the values have to be
loaded from the memory.

• To avoid the above time consuming process, the large number of registers in
RISC machines gives the opportunity to allocate a new set of registers to the
called procedure and the resister set assigned to the calling one remains
untouched.

• Compilers in RISC machines handles the optimization of the registers’ use,
which makes the RISC compilers more complex that those of CISC ones.

• RISC compilers use several techniques in order to handle the large number
of registers and to increase the level of their usability. A common method in
several RISC compilers is the use of overlapping register windows or banks.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 323

• RISC processors have small die size: they are simple processors and thus
they require fewer transistors and less silicon area.

• As a result, a RISC CPU leaves more free area for performance-enhancing
features (cache memory, DSP and memory management functions).

• RISC processors require small development time: they are simple processors
and thus they require less design effort and therefore have low design cost.

• RISC machines have generally poor code density as a consequence of the
fixed instruction set.

• In the absence of cache memory, poor code density leads to more main
memory bandwidth being used for instruction fetching.

• Where code density is of prime importance, some RISC processors use a
compressed instruction set (encoding with fewer bits).

• For example, the ARM processors have incorporated a novel mechanism
called Thumb architecture which uses a 16-bit compressed form of the original
32-bit instruction set and employs decompression in the instruction pipeline.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 324

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 325

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 326

• Equation for expressing the processors’ performance ability:

• The CISC approach attempts to minimize the number of instructions per

program, but suffers in number of cycles per instruction.

• RISC approach does the opposite: reduces the cycles per instruction at the

cost of number of instructions per program.

• Also, the RISC approach exhibits reduced cycle time due to the reduced

complexity of the control unit and the datapath.

• Most of the current processors are not typical RISC or CISC machines, but

try to combine advantages of both approaches.

• In embedded systems, we choose a RISC machine mainly due to its reduced

complexity and its suitability in terms of instruction set characteristics for the

given application implemented by the given embedded system.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 327

• Analysis of the application to be implemented in order to find the key

operations (use statistics from programs implementing the target

application or similar applications).

• Design of an optimal datapath (ALU and registers) for the execution of

the key operations. The data path have to be optimized for the target

application, and the used programming language / compiler.

• The time needed for the fetching of the operands from the registers their

passing through the ALU and the storing of the result back to a register

(data path cycle time) must be optimized.

• Design of a suitable instruction set for the optimal implementation of the

key operations.

• Inclusion of extra instructions (with less usability) that do not slow down

the machine.

• Selection of few suitable addressing modes by taking into account how

they affect the speed of the processor.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 328

• Processors (CISC or RISC) try to solve the same problem: to cover

the gap between HLLs and assembly (semantic gap).

• They do it in different ways: CISC machines are going the traditional

way of implementing complex instructions, while RISC machines try to

simplify the instruction set.

• Innovations in RISC architectures are based on an analysis of a large

set of widely used programs.

• The main features of RISC architectures are: reduced number of simple

instructions, small number of addressing modes, load-store architecture,

instructions of fixed length and format, availability of many registers.

• RISC architectures use pipelining efficiently.

• The simplification of the instruction set as well as the handling of the

large number of registers and the optimization of their use, lead to a

need for complex compilers in RISC machines.

• Modern architectures often include both RISC and CISC features.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 329

5b. The ARM processor

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 330

• 1985: Acorn developed the first commercial RISC processor.

• 1990: The cooperation of Acorn and Apple leads to the creation of

Advanced RISC Machines (ARM) in UK.

• 1991: Development of the first embeddable RISC processor (ARM6).

• 1992-1994: Vendors as Sharp and Shamsung asked license to use the

ARM processor for their embedded applications.

• 1993: Development of ARM7 (suitable for multimedia applications).

• 1995: Development of the Thumb architecture and the ARM8.

• 1996-2000: Alcatel, Philips, Sony and Erickson (for Bluetooth) asked

license to use ARM processors in their applications.

• 2001-2006: The percentage of ARM in the market of 32-bit embedded

RISC processors approached 80%.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 331

• ARM is one of the most commonly used RISC processors (mainly as

embedded core, but also as discrete component):

 Hard IP block: fully characterized on a target technology and exploits the

area, power and performance advantages of full-custom layout design.

 Soft IP block: synthesized netlists on RTL level.

• Uses fixed-length 32-bit instructions.

• Contains a large number of 32-bit general purpose registers.

• It is based on a load-store architecture: instructions that reference to memory

just move data without doing processing.

• The processing instructions use values stored in registers only, and exhibit

single cycle execution directly by the hardware (without the need of microcode).

• Has simple and pipelined architecture that leads in small implementations (in

terms of area), and low energy consumption.

• It is used for relatively “small” applications that require quite high performance.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 332

• The basic processor of the ARM7 family is the ARM7TDMI.

• ARM7TDMI is the most widely used 32-bit embedded RISC processor.

Optimized for cost and low-power applications, this solution provides the

low power consumption, small size, and high performance needed in

portable, embedded applications.

• The family also include processor cores with unified cache memory, as

well as synthesizable (embedded) cores in Verilog and VHDL, ready for

compilation into commercial technologies. Optimized for flexibility and

featuring an identical feature set to the hard macrocell, it improves time-

to-market by reducing development time.

• In the next slides the basic processor of the ARM7 family is analyzed,

while at the end of the lecture some details are provided concerning

the evolution of the ARM architecture in most recent families such as

ARM9, ARM9E, ARM10 and ARM11.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 333

Main components

• Register bank with two read ports and one

write port used to access any register, plus

single read and write ports that give special

access to r15 (PC). The extra write port

allows the update of PC as the instruction

fetch address is incremented, and the read

port allows to an instruction to continue after

a data address has been computed.

• Shifter can shift an operand by any number of

bits.

• ALU and multiplier perform logic and arithmetic

functions required by the instruction set.

• Address register and incrementer select and

hold the memory addresses and generate

sequential addresses when required.

• Data registers and instruction pipeline hold data

passing to and from memory, and instructions

coming from memory.

• Instruction decoder and associated control logic

managing the datapath operation.

Multiplier

Data out Register

Instruction

Decoder

and

Control Logic

Incrementer

Register Bank

Address Register

Shifter

32-bit address bus

Dout [31:0]

Data in Register

ALU

P
C

A
L
U

b
u
s

A

b
u
s

B

b
u
s

Instruction Pipeline

Din [31:0]

R
W

W

R R

PC

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 334

• The processor’s instruction set defines the operations that the programmer

can use to change the state of the processor.

• This state comprises the values stored to the processor’s visible registers

and to the memory.

• Each instruction performs a defined transformation from the processor state

before the instruction is executed to the state after it has completed.

• Although the processor have many invisible registers involved in executing

an instruction, the values of these registers before and after the execution

of the instruction, are not significant.

• Only the values in the visible registers are significant.

• When writing user-level programs, only 15 general-purpose 32-bit registers

(r0-r14), the program counter (r15) and the current program status register

(CPSR) need to be considered.

• The remaining registers are used only for handling exceptions

(e.g. interrupts).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 335

• ARM has 37 32-bit registers:

31 general-purpose, including

a program counter (PC) and 6

status registers.

• In all operation modes 15

general-purpose registers (r0 to

r14), one status register and the

program counter are visible.

• Registers r0 to r7 are unbanked

registers, i.e. each of them refers

to the same physical register in

all processor modes.

• Registers r8 to r14 are banked

registers. Each of them refers to

a physical register according to

the current processor mode.

Specific names are used for

the particular physical registers

of each operational mode.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 336

• r15 (program counter) holds the address of the next instruction.

• r13 is used as a stack pointer (SP). Each exception mode has its own banked
version of r13, which indicates a stack dedicated to that exception mode and
stores to this stack the values of the user registers (in order not to corrupt the
state of the user program that was being executed when the exception occurred).

• r14 is used as link register (LR) and has two special functions:

 When an exception occurs, the exception mode’s version of r14 is set to the
exception return address. The return from the exception mode is performed
by copying back r14 to the PC.

 In each mode, the mode’s own version of r14 is used to hold subroutine
return addresses. When a subroutine is called, r14 is set to the subroutine
return address, and the return is performed in a similar way with that of the
exception mode.

• The CPRS (current program status register) is used in user-level programs to store
the condition code bits (used for record a result of a comparison operation, and to
control whether or not a conditional branch is taken).

• The SPSRs (saved program status registers) are used to save the state of the
CPSR of the task before the exception occur.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 337

• Exceptions are used to handle unexpected events arising during the program

execution, such as interrupts or memory faults.

• ARM exceptions are considered in three groups:

 Exceptions generated directly from instruction execution: software interrupts,

undefined instructions (absent coprocessor instruction), prefetched aborts

(memory faults during fetch).

 Exceptions generated as side effects of an instruction: data aborts (memory

fault during load-store instructions).

 Exceptions generated externally: reset, IRQ (interrupt), and FIQ (fast interrupt).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 338

• When an exception arises, ARM completes the current instruction (not in reset
mode in which the current instruction is stopped) and then departs from the
current instruction sequence to handle the exception:

 The current state is saved by copying the PC into r14 of the new mode
and the CPSR into SPSR of the new mode.

 The processor operating mode is changed to the appropriate exception
mode.

 The PC is forced to a specific value depending on the mode of operation.

 The two low physical registers (r14, r13) in each exception mode are
used to hold the return address (PC) and to save to the memory other
user registers (stack pointer). FIQ mode has additional registers to give
better performance by avoiding to save to the memory user registers.

• The return to the user program is achieved by restoring the user state exactly
as it was when the exception occurred:

– Any modified user registers are restored from the stack.

– The CPSR is restored from the appropriate SPSR.

– The PC must be changed back to the relevant instruction address in the
user instruction stream.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 339

logic/arithmetic

Cinfunction

Invert A Invert B

result

result mux

Logic functions

A operand latch B operand latch

XOR gates XOR gates

Adder

• The input operands are selectively inverted, and then added or combined
in the logic and arithmetic units.

• Two parallel units: one for logic and one for add operations.

• A multiplexer selects the proper output.

• ALU uses a carry-select adder in order to optimize its speed.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 340

• This adder uses double 4-bit ripple-carry adders and computes in the same time the
sum of each addition for a carry-in of both zero and one.

• Then the final result is selected by using the correct carry-in to control a multiplexer.

• The scheme is fast, but consumes extra energy due to the double additions.

sum[31:16]sum[15:8]sum[7:4]sum[3:0]

s s+1

a,b[31:28]a,b[3:0]

c

mux

mux

mux

mux mux mux

mux

RCA RCA RCA RCA RCA RCA RCA RCA

A

B

Cin

sum

Cout

RCA

FA

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 341

• The ARM architecture supports instructions which perform a shift operation in series

with an ALU operation.

• The shifter performance is critical (contributes directly to the datapath cycle time).

• Some processor architectures tend to have the shifter in parallel with ALU, in order not

to affect the datapath cycle time.

• In order to minimize the delay through the shifter, a cross-bar switch matrix is used.

• Each input is connected to each output through a switch matrix (containing switches

implemented with NMOS transistors).

• For a left or right shift, one diagonal is turned on.

4x4 switch matrix

(ARM uses a 32x32 matrix)

in[0]

in[1]

in[2]

in[3]

out[0] out[1] out[2] out[3]

no shiftright 1right 2right 3

left 1

left 2

left 3

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 342

• The high-performance multiplication used

in recent ARM cores tries to avoid carry

propagate delays associated with adding

partial products together.

• Thus, a carry-save adder (CSA) tree is

used, which includes 4 layers (stages)

with 8 full-adders in each of them. The

produced partial sums and carries are

combined in the ALU’s adder to compute

the final product.

• A shifter is used in order to perform the

required shifting for the application of the

CSA-based multiplication algorithm that

has been selected for the multiplier of the

ARM processors.

• A multiply instruction can take as few as

two cycles (one to load the instruction

and a second for the first CSA stage) or

as many as five cycles (one to load the

instruction and four for the CSA stages).

Registers holding multiplicand,
multiplier and product

Shifter

Carry-save adders tree

Partial carriesPartial sums

ALU carry-select

adder

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 343

ALU ADDER

• No carry is propagated within the stages.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 344

Decode

PLA

Cycle
count

Multiply
control

Load/store
multiple

Address
control

Register
control

ALU
control

Shifter
control

Instruction

Co-processor

Decode

PLA

Cycle
count

Multiply
control

Load/store
multiple

Address
control

Register
control

ALU
control

Shifter
control

Instruction

Co-processor

• Instruction decode PLA

(programmable logic array): uses

some instruction bits and the cycle

counter to define what operation

will be performed in the next cycle.

• Distributed control logic associated

with the datapath blocks (address

control, register control, ALU

control, shifter control). Uses

information from the PLA to select

other instruction bits in order to

control the datapath.

• Decentralized extra control units

for specific instructions that takes

variable number of cycles to

complete (multiple words load and

store, multiply, co-processor

operations).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 345

• ARM architecture has a mechanism for extending its instruction set through the
addition of co-processors.

• A co-processor can be a floating-point machine or a machine dedicated to other
application-specific operations.

• The co-processor is attached to the bus where the instruction stream flows into
the ARM, and copies the instructions into an internal pipeline that mimics the
behavior of the ARM instruction pipeline.

• The ARM has the responsibility to control the instruction flow, and each co-
processor has its own register bank to perform its operations.

• Co-processor’s data processing instructions are completely internal and cause
state changes in the co-processor’s registers.

• In case of data transfer instructions of the co-processor, the ARM processor
generates the memory address, but the co-processor controls the flow of data
words.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 346

• ARM is based on a simple pipeline architecture to increase the speed of the flow of

instructions to the processor. This enables several operations to take place simultaneously.

• A three-stage pipeline is used, so data processing instructions are executed in a single

cycle (after fetching and decoding).

• While one instruction is being executed, its successor is being decoded, and a third

instruction is being fetched from memory (latency: 3 cycles, throughput: 1 cycle).

Instruction is fetched from the memory
and placed into the instruction pipeline.

Instruction is decoded and the datapath control
signals prepared for the next cycle (the instruction
‘owns’ the decode logic but not the datapath).

Instruction ‘owns’ the datapath, operands are read from
register bank, possibly an operand is shifted, the ALU
generates the result that is written to destination register.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 347

• In register-register data processing
instructions (single cycle), two
register operands are accessed.

• The value on the B bus can be
shifted and is combined with the
value on the A bus in the ALU.

• Result is written back into the
register bank through the ALU bus.

• PC value is in the address register,
from where it is fed into the
incrementer and then copied back
into r15 and into the address
register to be used as the address
for the next fetched instruction
(loaded into the bottom of the
instruction pipeline).

PC

Multiplier

Incrementer

Register Bank

Address Register

Shifter

ALU

Data out Data in Instr. Pipeline

A
L
U

b
u
s

B

b
u
s

A

b
u
s

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 348

• In register-immediate data processing
instructions (single cycle), only one
register operand is accessed.

• The immediate value is extracted on
the B bus from the current instruction
located at the top of the instruction
pipeline.

• This value is combined with the value
on the A bus in the ALU.

• Result is written back into the register
bank.

• PC value is in the address register,
from where it is fed into the incrementer
and then copied back into r15 and into
the address register to be used as the
address for the next fetched instruction
(loaded into the bottom of the instruction
pipeline).

PC

Multiplier

Incrementer

Register Bank

Address Register

Shifter

ALU

A
L
U

b
u
s

B

b
u
s

A

b
u
s

Data out Data in Instr. Pipeline

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 349

• STORE instruction need two cycles for execution (calculate of address and data transfer

to memory). LOAD instruction needs an additional third cycle to transfer the data from the

data-in register (in which data are placed from the memory) to the destination register.

• When a multi-cycle instruction is executed between single-cycle operations the flow is less

regular, due to the presence of stalls (breaks in the pipeline). We can see in the example

that the memory is used in every cycle.

Example: Sequence of single-cycle ADD instructions with a STORE

instruction occurred after the first ADD.
Fetch Instruction

Decode Instruction

Calculate address

Transfer content
from or to memory

fetch ADD decode execute

fetch STR decode calc. add.

fetch ADD decode execute

data trans.

fetch ADD decode execute

fetch ADD decode execute

Access memory cycles

memory is busy

previous ADD
cannot leave

the decoder

data dependency

pipeline becomes regular again

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 350

• STORE instruction needs two cycles.

• First cycle: Address calculation

• A register is used as the base register,

to which is added an offset which may

be another register or an immediate

value.

• The calculated address is sent to the

address register through the ALU bus,

in order in the second cycle the data

transfer to takes place.

• The incremented PC value is stored

in the register bank at the end of the

first cycle, so that the address register

is free to accept the data-transfer

address for the second cycle.

PC

Multiplier

Incrementer

Register Bank

ALU

A
L
U

b
u
s

B

b
u
s

A

b
u
s

Data out Data in Instr. Pipeline

Address Register

Shifter

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 351

• Second cycle: Data transfer

• The content of the register to be

stored is sent to the Data-out

register through the B bus, and

then directly to the calculated

address of the memory.

• The value of the PC is fed back to

the address register to allow to the

prefetched instruction to continue.

• LOAD instruction follow a similar

way of execution, except that the

data from memory are placed in

the data-in register on the second

cycle, and a third cycle is needed

to transfer the data from there to

the destination register (through

the B and ALU buses).

PC

Multiplier

Incrementer

Register Bank

ALU

A
L

U

b
u
s

B

b
u
s

A

b
u
s

Data out Data in Instr. Pipeline

Address Register

Shifter

Only for
auto-
indexing

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 352

• Branch instructions need three cycles.

• Branch instructions compute the target address of the branch in the first

cycle (in the same way as the calculation of the address in data-transfer

instructions).

• The result is issued as an instruction fetch address, and while the

instruction pipeline refills, the return address is copied into the link

register (r14) during the second cycle.

• The third cycle is required to complete the pipeline refilling, and to make

a small correction to the value stored in the link register in order to be

suitable for the instruction which follows the branch.

• Other ARM instructions operate in a similar manner with the three

instruction categories described previously.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 353

C source
code

Assembly
source

C compiler Assembler

C libraries

Linker

.aof

Object
libraries

.axf

ARM sdSystem
model

ARMulator Development board

• The tools are intended for cross-

development (they run on a different

architecture from that for which they

produce code).

• C compiler is supported by a library

of standard functions.

• Assembler produces object format

output that can be linked with output

from the compiler. Substitutes names

of variables with symbolic references.

• Linker takes one or more object files

(sequences of assembly instructions)

and combines them into executable

format. Substitutes the symbolic

references with actual addresses.

• Symbolic debugger (sd) assists in

debugging programs running under

instruction-set simulator (ARMulator)

or on an ARM development board.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 354

• Assembly language programming in ARM requires the programmer to

think at the level of the ARM machine instruction.

• An ARM instruction is 32 bits, so there can be around 4 billion different

binary machine instructions !

• Fortunately, there is considerable structure within the instruction space,

so the programmer does not have to be familiar with each binary

encoding.

• The assembler is a tool which handles most of these details for the

programmer.

• After building a program, the programmer can invoke the debugger and

step through each instruction (one at a time).

• The debugger allows the control of the execution and the observation of

the registers and the memory locations.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 355

Example of ARM program and debugger environment

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 356

• ARM uses three types of instructions:

 Data processing instructions (arithmetic operations, logical

operations, register moves, comparisons, shift operations).

 Data transfer instructions (register load/store instructions).

 Control flow instructions (branch instructions).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 357

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 358

basic arithmetic operations:

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 359

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 360

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 361

logical operations:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 362

register move operations:

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 363

register comparison operations:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 364

shift operation.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 365

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 366

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 367

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 368

MUL r4, r3, r2 ; r4 := r3 x r2

MLA r4, r3, r2, r1 ; r4 := (r3 x r2) + r1

• Differences from the other arithmetic operations:

- Immediate second operands are not supported.

- The result register cannot be the same as the second source
register.

multiply instructions:

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 369

multiplying by a constant value,

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 370

r0: destination register

r1: base register

register-indirect addressing.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 371

• To load or store from or to a memory location, an ARM register must be

initialized to contain the address of that location.

• In order to do that a pseudo instruction is used: ADR (the assembler

translate it to a real data processing instruction).

• Example: Copy of data within memory from TABLE1 to TABLE2.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 372

• The way in which the ADR pseudo instruction works is: the desired data address value

is often close to the code being executed and thus it is possible to exploit the fact that

the program counter (r15) is close to that desired address.

• A data-processing instruction can be employed by the assembler to add a small offset

(pc-relative offset) to r15.

• So, ADR instruction is translated by the assembler into an instruction that adds a constant

to the pc value (r15) and puts the result in the proper register.

• The pc-relative offset is calculated as: table1_address – (pc value + 8). The value 8

accounts for the fetch and decode cycles of the current instruction. Note that, the memory

is organized in Bytes.

ADR r1, table1

ADR r2, table2

...........................

xxxxxx

...........................

yyyyyy

...........................

ADD r1, PC, #88

ADD r2, PC, #90

Pseudo instructions Real instructions

0000 8000

0000 8004

0000 8090

0000 809C

offset_1 = 8090 - (8000+8) = 88

offset_2 = 809C - (8004+8) = 90

Table1_address

Table2_address

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 373

pre-indexed addressing mode:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 374

LDR and STR instructions are repeated until the required number of

values has been copied into TABLE2, and then the loop is exited.

LDR r0, [r1], #4 ;
r0:= mem32 [r1]

r1:= r1 + 4

auto-indexing:

post-indexed addressing,

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 375

• As another variation, the size of the data item which is transferred may be
a single 8-bit byte instead of a 32-bit word. This option is selected by adding
a letter B onto the symbolic operation code:

• LDR and STR instructions only load/store a single 32-bit word.

• ARM can load/store any subset of its registers in a single instruction by using
load/store multiple instructions. For example:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 376

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 377

INCREMENT

AFTER

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 378

Multiple register transfer addressing modes

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 379

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 380

ARM branch conditions

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 381

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 382

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 383

r14 is the link register used for storing the return address

Subroutines

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 384

Nested subroutines

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 385

Preserve things inside a subroutine using the stack

r13 is used as stack pointer

STMDA

LDMIB

STMDA LDMIB

SP moves

up

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 386

Effects of subroutine nesting

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 387

• ARM instructions are all 32-bits words aligned on 4-byte boundaries.

• Some ARMs can execute a compressed form of the instruction set where a subset of

the full instruction set is encoded into 16-bit instructions (Thumb instruction set).

• Internally, all ARM operations are on 32-bit operands and the shorter data types (e.g.

8-bit) are only supported by data transfer functions. When a byte is loaded from memory

(byte-addressed memory), it is extended to 32 bits for internal processing.

• Most programs operate in the user mode, however ARM has extra operating modes

which are used to handle exceptions and software interrupts. The operating mode is

defined by the bottom five bits of the CPSR.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 388

• ARM has extend the conditional execution to all of its instructions. The condition field

occupies the top four bits of each 32-bit instruction.

• Each of the 16 values of the condition field caused the instruction to be executed or

skipped according to the values of the flags in the CPSR.

Instruction

CPSR

Flags

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 389

Branch instructions

• Bits [31:28] are used to specify the condition under which the instruction is
executed.

• Bits [25:27] identify that this is a B (branch) or BL (branch with link) instruction.

• The L bit (24) is set to 1 if it is a branch with link and is cleared to 0 if it is a
single branch.

• The 24-bit signed word offset specifies the destination address.

• In order to compute the destination address of the branch instruction, the
assembler adds the offset to the PC which contains the address of the branch
instruction plus 8 bytes.

• In the case of a BL instruction (L = 1), the address of the instruction following
the branch is moved into the link register (r14).

• This is used to perform a subroutine call and cause a return by copying the
link register back to the PC.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 390

Data processing instructions

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 391

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 392

Multiply instructions

cond Rm

31 28 27 24 23 21 20 19 16 15 12 11 8 7 4 3 0

1 0 0 1RsRn/RdLoRd/RdHimul S0 0 0 0

• RdHi:RdLo is the 64-bit number formed by combined the 32 MSBs and the 32 LSBs of

the result.

• The S bit controls the condition codes of the CPSR as with the other data processing

instructions:

 The N flag is set to the value of bit 31 of Rd for the case of 32-bit result, and to the bit 31
of RdHi for the case of long result.

 The Z flag is set to 1 if Rd or RdHi or RdLo are zero.

 The C flag is set to a meaningless value, and the V flag is unchanged.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 393

Data transfer instructions

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 394

Software interrupts

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 395

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

SP (r13)

LR (r14)

PC (r15) CPSR

High registers

Low registers

Shaded registers have
restricted access

r10

r11

• ARM Thumb instruction set addresses the issue of code density.

• It is a compressed form of a subset of the standard ARM instruction set. Thumb instructions

are mapped onto the ARM instructions, and the processor uses a decompression scheme in

the ARM instruction pipeline in order the Thumb instructions to be executed as standard ARM

instructions within the processor.

• Thumb instruction set operate on a restricted view of the ARM registers.

• There is full access to the eight low registers

(r0-r7).

• r13-r15 are used for special purposes (stack

pointer, link register and program counter.

• Only few instructions are allowed to use the

high registers (r8-r12).

• All Thumb instructions are 16-bit.

• Most Thumb instructions are executed

unconditionally.

• Many Thumb data processing instructions

use as destination register one of the source

registers.

• Thumb instruction formats are less regular

(as a result of dense encoding).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 396

• If T in the CPSR is set to 1, the processor interprets the instruction stream as

16-bit Thumb instructions. Otherwise it interprets the stream as standard ARM

instructions.

• The normal way to switch between Thumb and standard ARM operation is by

executing a BX (branch and exchange) instruction. This instruction is available

in both modes of operation. The bottom bit of Rm is copied into the T bit of the

CPRS, and the PC is switched to the address given in the remainder of the

register.

cond Rm

31 28 27 4 3 0

0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 ARM instruction

Thumb instructionRm

15 7 6 5 3 2 0

0 1 0 0 0 1 1 1 0 H 0 0 0

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 397

• Although ARM supports a shift operation together with the ALU operation

in a single instruction, the Thumb instruction set separates shift and ALU

operations into two different instructions.

• In standard ARM instruction set the shift operation is used as an operand

modifier, while in Thumb is used as an individual opcode.

• Thumb instructions include a subset of the standard instructions covering

the most commonly used operations required by the compiler.

• The selection of those to include and those to leave out was based on

a detailed understanding of the needs of typical application programs.

• In Thumb instructions, a more complex encoding is used due to the

availability of less encoding bits (16 bits in comparison with 32 bits of

the standard ARM instruction set), and the restricted use of the system’s

registers.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 398

• Thumb instruction set can be incorporated into an ARM processor with some
changes to the processor logic.

• The major addition is the Thumb instruction decompressor in the instruction
pipeline, which is a logic circuit that translates the Thumb instructions to its
equivalent ARM instructions.

Data in

Instruction
pipeline

B operand bus

Data in from memory

mux

Thumb

ARM instruction
decoder

MUX

Data in

pipeline

Immediate fields

B operand bus

Data in from memory

Thumb
Decompressor

ARM instruction
decoder

Select high or
low half-word

Select ARM or

Thumb stream

MUX

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 399

• Example: Mapping of Thumb ADD instruction with immediate operand to the equivalent

standard instruction.

• Since the only conditional Thumb instructions are branches, the condition ‘always’ is

used during the translation of all Thumb instructions.

• The Thumb 2-address format is mapped into the ARM 3-address format by replicating

a register specifier.

ARM instruction

Thumb instruction

15 13 12 11 10 8 7 0

0 0 1 10 Rd

1 1 1 0 0 0 1 0 1 0 0 1 0 Rd 0 Rd

31 28 27 26 25 24 21 20 19 16 15 11 0

‘Always’

condition

Zero

shift

Immediate
value

8-bit immediate

15 13 12 11 10 8 7 0

0 0 1 10 Rd

1 1 1 0 0 0 0000 8-bit immediate operand1 0 1 0 0 1 0 Rd 0 Rd

31 28 27 26 25 24 21 20 19 16 15 12 0

‘Always’

condition

Immediate
value

Destination

and source

register

Major opcode
format (data

processing with

immediate)

Minor opcode

denoting ADD

and set cc

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 400

• Thumb instructions are 16-bit long and encode the functionality of an ARM
instruction in half number of bits.

• However, since Thumb instructions has less info than a standard instruction,
a particular program will require more Thumb instructions than standard ARM
instructions.

• Statistics from typical applications:

 Thumb code requires 70% of the ARM code space.

 Thumb code uses 40% more instructions.

 ARM code is 40% faster for 32-bit memory, while Thumb code is 45% faster for

16-bit memory (since always memory is organised in Bytes, 32 or 16-bit memory

accounts for the size of word transferred in each cycle).

 Thumb code uses 30% less external memory.

• Thus, where performance is the important parameter, a system should use 32-bit
memory and run ARM code, while where cost and power consumption are more
important, 16-bit memory and Thumb code is a better choice.

• An ARM system may use Thumb code for non-critical routines to save power and
memory requirements (e.g. user interface in a mobile telephone where real-time
DSP functions require the full-power of the standard ARM).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 401

• ARM processor access memory during the fetching of the instructions and during
loading and storing of data. The processor is much faster than the main memory.

• Cache memories (on-chip) attempt to bridge the processor-memory performance
gap.

• They are small and high-speed memories that keep recently referenced instructions
and data close to the processor, based on the expectation that they will be
referenced again soon.

• For parallel access during fetching and storing/loading we use separate instruction
and data caches.

Memory

hierarchy

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 402

• A ‘HIT’ in the instruction cache (or in the data cache) has as result the instruction

fetch stage (or the data transfer stage) to take only one cycle.

• A ‘MISS’ causes a stall in the instruction fetching for possibly many cycles until the

instruction is retrieved from the main memory or a stall to the load/store instruction

execution until the data transfer from/to the main memory. In addition, the next

instructions in the pipeline are stalled.

• The problem with the use of caches is that they

introduce uncertainty in terms of latency for

accessing the main memory, which is a problem

for safe scheduling in real-time systems.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 403

• How to know if a data item is in the cache ?

• A cache line is typically more than one word.

• In direct-mapped cache a line of data is stored along with an address tag (containing the

top bits of the address which are not used to select within a line).

• Example: 4KBytes Cache with M = 4 words per line and N = (4096/16) = 256 lines.

• A mapping of the memory addresses to the cache memory is needed.

• The coding of the 256 lines needs 8 bits, while the coding of the 4 words within each line

need 2 additional bits, leaving 22 bits for cache tag.

Tag Data

Line

Word 0 Word 1 Word 2 Word 3

Direct-mapped cache memory organization Address mapping used to access a cache entry

Indexes calculations:

Line index: (address / M) mod N

Word index: address mod M

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 404

Direct-mapped Cache memory operation

• The top address bits are

compared with the stored

tag bits, and if they are

equal, the item is in the

cache (HIT).

• Line and word index bits are

used to find the correct line

and word of the data to be

used by the data path of the

processor.

• When a MISS occurs, data

cannot be read from the

cache. A slower read from

the main memory will take

place.

32-r-w

32

32-r-w

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 405

• More complex organizations consist of multiple direct-mapped cache schemes operating

in parallel (set-associative cache).

• For example in a 4-way set-associative cache, an address mapped to the cache may

find its data in either of the 4 direct-mapped schemes, so each address may be stored in

either of 4 places. This decreases the MISS rate in the cache memory.

22 8

Tag

0

1

2

253

254

255

=

Data Tag Data Tag Data Tag Data

4-to -1 multiplexer

Hit Data

123891011123031 0

= = =

Mapped address

Line index

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 406

• ARM710T and ARM720T:

 Contain a unified 8 KBytes cache memory.

 It is organized as a four-way set associative cache

(four direct-mapped cache schemes operating in parallel).

 Consists of 512 lines of 4 words each.

• ARM920T:

 Contain two 16 KBytes caches (one for instructions

and a second for data).

 They are organized as eight-way set associative caches.

 Consist of 512 lines of 8 words each.

• Processors of the ARM10E family contain two 16 KBytes caches

(ARM1022E) or two 32 KBytes caches (ARM1020E).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 407

• The successive ARM families represent a significant shift in the pipeline

design.

• ARM7 family has a simple pipeline architecture with only three pipeline

stages.

• ARM9 and ARM9E increases the number of stages from three to five, while

ARM10 to six and ARM11 to eight.

• Addition and enhancement of cache memories and MMUs. Only a couple of

ARM7 processors contain unified caches, while ARM9-11 contain separate

data and instruction caches.

• There are often enhancements at the instruction set by inserting arithmetic

instructions which are suitable for DSP applications, at the processor structure

by inserting additional arithmetic blocks (e.g. extra adders for address

calculation in load-store instructions, or other enhancements such as the

use of branch prediction (static or dynamic).

Evolution of the ARM architecture

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 408

ARM7, ARM9

ARM9E, ARM10

ARM11Version 6 instruction set

Version 5 instruction set

Version 4 instruction set

ARM9TDMI, ARM920T

1995 20062000

Evolution of the ARM architecture (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 409

ARM7 pipeline– three stages ARM9 pipeline – five stages

Instruction

Fectch

ARM/Thumb

Decode

Register
Read

Shift + ALU
Memory

Access

Register

Write

IF ID EX MEM WB

• In ARM9, the ‘register read’ phase is moved to the decode stage.

• The execution stage is split to 3 stages (one for arithmetic operations, a second
to perform memory accesses that remains idle in case of data processing
instructions, and a third to write the result to the register file).

• These changes result to a more balanced pipeline (in terms of time), and allow
a faster clock signal.

• The data accesses do not have to compete with instruction fetches due to the
fact that they use different ports to/from the memory.

• In addition, a “result forwarding” technique is implemented, so the results from
the ALU can be feedback immediately to be used by the following instructions.
This avoid us not to wait for results to be written back to the register bank and
read from the register bank.

ARM9 architecture

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 410

ARM9 architecture

Benchmark programs show that ARM9 needs about 80% of the ARM7 cycles

ARM9 architecture (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 411

• As ARM9, the ARM9E processor implements a 5-stage pipeline and uses

two ports to/from the memory.

• Introduces a separate adder for multiply-accumulate instructions instead of

using the main ALU to do the final addition. This helps the execution of

instructions of the ARM version’s 5 instruction set, enabling DSP

enhancements.

• Saturation arithmetic operations that round the multiplication results to the

closest fixed-point number, are supported to minimize the calculation error

in DSP algorithms.

• In order to speed-up the memory access stage, another adder dedicated

to address computation is introduced.

ARM9E pipeline

MAC2 + SAT

Address
Calculation

Memory Access

ARM/Thumb
Decode Register

Write
Instruction

Fetch

Shift + ALU

MAC1

Register
Read

ARM9E architecture

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 412

• Processors of ARM10 family have a six-stage pipeline, and has 64-bit

instruction and data buses (two instructions can be fetched on each cycle).

• This enables the introduction of static branch prediction, by using the

heuristic “backward-taken/forward-not-taken” in order to eliminate the

penalty of branches for loops that execute many times.

• As in ARM9E, the data processing part of the pipeline is decoupled from the

memory access pipeline (two more adders are used again, one to calculate

the address and a second to support the multiplier).

• The last improvement introduced in ARM10 pipeline is the separation of

instruction decoding into a single stage.

Register
Read

MAC2 + SAT

Address
Calculation

Memory
Access

ARM/Thumb
Decode

Register
Write

Instruction
Fetch and

Branch
Prediction

Shift + ALU

MAC1

ARM10 pipeline

ARM10 architecture

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 413

ARM10

architecture

ARM10 architecture (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 414

ARM1020E processor with cache memory support

(Includes 32KB instruction and data cache memories, as

well as a floating-point co-processor)

ARM10 architecture (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 415

• ARM11 uses eight pipeline stages and introduces two main changes to the pipeline:

the shift operation is separated into a single stage, and both instruction and data cache

accesses are distributed across two pipeline stages.

• Dynamic branch prediction is introduced for the first time through a branch target

base (BTB) containing statistics for the branches.

• If the BTB does not contain information for a given branch, the branch is predicted in

the decode stage using a static heuristic as in ARM10.

• Decoupling of ALU, MAC and load/store pipelines in order to improve the performance.

• Enhancements in the instruction set (version 6) to support extra DSP operations.

ARM11 exhibits 40% performance improvements compared to previous versions

ARM11 pipeline

Register
ALURegister

Read
IF2

Decode
and static

prediction

MAC1

SAT

MAC1 MAC1

SHIFT

Address
Calculation

DC1 DC2

Register
WriteInstruction fetch

and Dynamic
branch prediction

IF1

ARM11 architecture

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 416

Conclusions

• The basic ARM processor (ARM7) was fully analyzed:

 Operation, architecture, units, registers.

 Instructions (way of execution, decoding etc.).

 Compressed instruction set (thumb).

• ARM are the most widely used 32-bit embedded RISC processors.

Optimized for cost and low-power applications, provide the low power

consumption, small size, and high performance needed in portable,

embedded applications.

• ARM provides processor cores with cache memory support.

• The evolution of the ARM architecture was also presented (ARM9,

ARM9E, ARM10 and ARM11).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 417

6a. Application-specific instruction-set
processors (ASIPs) design

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 418

• Basic challenge in embedded systems design:

How to effectively design first-time-right complex systems that meet

multiple design constraints?

• To do that it is important to maximize the flexibility/programmability of

the target system architecture moving as much functionality as possible

to embedded software.

• General purpose processors may not be able to deliver the performance

(speed, energy consumption) required by the application, and they may

be prohibitively expensive or inefficient.

• Thus, the embedded systems industry has already shown an increasing

interest in Application-Specific-Set Processors (ASIPs).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 419

• ASIPs are processors designed for a particular application or family

of applications.

• An ASIP is designed to exploit special characteristics of the target

application in order to meet performance, cost and energy requirements.

• These processors are smaller and simpler than their general-purpose

counterparts, able to run at higher clock frequencies and with more

energy efficiency.

• Obtaining best results requires proper decisions at the instruction set,

architectural and the memory organization levels.

• They are considered as a balance between two extremes: ASICs and

general-purpose processors. Since an ASIC is designed for a specific

behavior, it is difficult to make any changes at a later stage. ASIPs offer

the required flexibility at lower cost than general purpose processors.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 420

• Maintain a level of flexibility and programmability through their own

instruction set, and perform the required (specific) computations in

fewer cycles.

• Overcome the problems of conventional processors:

 Fixed-level of parallelism which may prove inefficient for real-time

applications of high computational complexity.

 High energy consumption.

 Time-critical tasks that require the incorporation of dedicated

hardware modules.

• More customized than general purpose processors or DSPs which

are just for simple control and specific DSP operations. They provide

the required computations without unnecessary generality, in a higher

speed and by using smaller silicon area.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 421

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 422

1. Instruction-set (IS) specialization:

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 423

2. Functional units and datapath specialization:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 424

3. Memory specialization:

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 425

4. Interconnect specialization:

5. Control specialization:

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 426

• Given an application or set of applications, the design of an instruction

set and architecture requires the following things in order to meet the

design constraints of area, performance and energy consumption:

 Definition of the design space of both instruction set and

architectures to be explored.

 Understanding of the relationships between application

characteristics and design (mapping of application on the defined

architecture).

 Development of tools (estimator, compiler, assembler or code

generator, debugger) for application analysis, efficient design

space exploration, processor architecture selection and code

generation.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 427

• Application analysis and design space exploration.

• Instruction set generation: generation of an instruction set that

optimizes several parameters: instruction set size, cycles count,

cycle time, required gates count etc.

• Architectural template definition: define number and type of functional

units, storage elements, interconnect resources, pipelining and

parallelism etc.

• Code generation: systematic mapping of the application into

assembly code with the generated instruction set.

• Architecture synthesis: this procedure synthesizes the processor

architecture (generates processor’s hardware description), which

implements the generated instruction set.

Main steps for ASIP design

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 428

Application analysis and
design space exploration

Instruction-set generation and
architectural template definition

Code generation Hardware synthesis

Object code
Processor’s

hardware description

ASIP design flow

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 429

• Input in the ASIP design process is an application or a family

of applications.

• The target application(s) along with its test data and design

constraints are analyzed.

• It is essential to analyze the application in order to get the desired

characteristics and requirements, which can guide the hardware

synthesis as well as the instruction set generation.

• The original application description is translated in a high-level

language and profiling is applied in order to get the desired

information.

• Major task is to extract the proper requirements (micro-operations),

which will lead the instruction set and micro-architecture design

procedure.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 430

• Application analysis and profiling output may includes:

 Number of operations and functions.

 Frequency of individual instructions and sequence of

contiguous instructions.

 Average basic block sizes.

 Data types and their access methods.

 Ratio of address computation instructions to data computation

instructions.

• Application analysis serves as a guide for the subsequent steps in

ASIP synthesis.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 431

• It is important to decide about a processor architecture suitable for

target application.

• Determination of a set of architecture candidates for specific

application(s) given the design constraints.

• Estimation of performance, hardware cost and energy consumption,

and selection of the optimum architecture, are included in this phase

of the ASIP design.

• Performance estimation can be based on a simulator with energy

consumption estimation capabilities.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 432

Typical architecture exploration environment

The selection process typically can be viewed to consist of a search

technique over the design space driven by a performance estimator.

Such a simulator is configured for a particular architecture and produce

the corresponding performance and energy consumption estimates.

Input from application

analysis

Performance
estimator for

a specific
architecture

Search
control

Architectural design
space

Selected
architectural

template

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 433

• Assume for example that the target application belongs in the multimedia

field. Thus it requires high performance and low energy consumption for

efficient manipulation of large amount of data in real time.

• Architectures with different configurations in terms of hardware resource

selection and interconnection are explored in order to examine the

execution performance and power tradeoffs.

• For this reason a parametric processor model is defined and analysed

based on pre-characterized hardware units.

• Different values should can be assigned to the parameters while keeping

design constraints into consideration.

• The parameters that meet the design constraints and exhibit the optimum

results, are used for the definition of the processor’s architectural template.

Architectural template definition

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 434

Architectural parameters

• Number and type of functional units

• Storage elements

• Interconnect resources

• Pipelining

• Number of pipeline stages

• Instruction-level parallelism

• Memory hierarchy and addressing support

• Latency of functional units and operations

Architectural template definition (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 435

• Instruction set is synthesized for a particular application based

on the application requirements, quantified in terms of the required

micro-operations and their frequencies.

• The instruction set generation process should utilize:

 A model for the architecture.

 An objective function that establishes a metric for the robustness

of the solution (both instruction set and architecture).

 Design (hardware resource and timing) constraints.

• Instruction selection is based on heuristic rules: starting from a general

instruction set that covers all the operations required by the application,

modifications are performed (include, exclude or combine instructions)

only if the objective function (performance) is improved by a predefined

percentage.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 436

The retargetable code generator takes as inputs the architecture template,

the instruction set and the application written in a HLL, in order to generate

the object code.

Application

(HLL)

Architectural

template
Instruction set

Retargetable code generator

Code

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 437

The retargetable compiler generator takes as inputs the architecture template

and the instruction set and generate a customized compiler which accepts the

application programs and produces the object code.

Application

(HLL)

Architectural

template
Instruction set

Retargetable compiler generator

Code

Customized compiler

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 438

• Hardware synthesis refers to the generation of the HDL descriptions

for the processor modules.

• Automatic generation of RTL descriptions, for both simulation and logic

synthesis purposes.

Design

constraints
Architectural

template Instruction set

Hardware synthesizer

VHDL description

of the processor

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 439

ASIP example: Tensilica Xtensa LX2 processor

• Configurable, extensible and synthesizable

processor for rapid implementation of

complex SoC designs.

• Base architecture: 32-bit ALU, 68 registers,

80 instructions, compressed 16- or 24-bit

instruction encoding.

• Selection and configuration of predefined

processor functions (configurability).

• Optional predefined execution units:

32-bit multiplier, 16-bit MAC, DSP engine,

floating point unit.

• Explorer to analyze the application and find

options that will enhance performance.

• Specific language (Verilog-like) to describe

new execution units, and processor

generator to add them to the processor

(extensibility).

• Designer-selectable 5- or 7-stage pipeline:

option of adding two cycles for access

memories with long access times.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 440

• ASIPs are processors designed for a particular application or family

of applications.

• An ASIP is designed to exploit special characteristics of the target

application in order to meet performance, cost and energy requirements.

• ASIPs are considered as a balance between two extremes: ASICs and

general-purpose processors, and offer the required flexibility at higher

speed, lower energy consumption and lower cost than general purpose

processors.

• The main steps in a typical methodology for ASIP design are:

 Application analysis.

 Design space exploration.

 Instruction set and architectural template generation.

 Code generation.

 Hardware synthesis.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 441

6b. Very long instruction word (VLIW)
processors

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 442

• The competitors in embedded processor market ranging from vendors

implementing variations of traditional embedded processor architectures

(mainly RISCs) such as ARM and MIPS to vendors introducing application

specific instruction set architectures, such as ARC and Tensilica.

• At the same time, the complexity of embedded applications increases

considerably, and it is not uncommon to find many hundreds of lines

of HLL code in embedded products (e.g. mobile phones).

• As a result, today there is a new direction to use VLIW processors

in embedded systems that can be application specific and offer high

performance, in order to perform computation intensive functions.

• This direction is based not only on the increase of the complexity

of embedded applications, but also on the high evolution of the IC

fabrication technology and compilers’ technology.

• VLIW architectures are characterized by instructions that each specifies

several independent operations, while RISC instructions typically specify

one operation, and CISC instructions typically specify several dependent

operations.

VLIW processors in embedded systems

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 443

• VLIW processors are high-performance processors, that use multiple

execution units and have the ability to execute multiple operations

simultaneously.

• VLIW architectures rely on compile-time detection of parallelism:

the compiler analyses the program and detects operations that can

be executed in parallel, so such operations are packed into one

“long” instruction.

• This is in contrast with superscalar processors (traditional parallel

computers) in which hardware is responsible to detect parallelism

between operations, leading in high complexity of the hardware.

• In VLIW machines, after one instruction has been fetched, all the

corresponding (independent) operations are issued in parallel.

• The compiler can analyse the whole program in order to detect parallel

operations and no specific hardware is needed for run-time detection of

parallelism.

What are VLIW processors ?

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 444

Detection of operations

parallelism and their packaging

into instructions are performed

by the compiler off-line (static

scheduling).

Program

What are VLIW processors ? (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 445

Architecture of VLIW processors

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 446

Registers

Add r1,r2,r3 Sub r4,r5,r6 Ldr r7,foo Str r8,baz NOP

ALU ALU Load/store Load/store FU

• Traditionally the datapath has a large single register bank shared by all

functional units.

• In order to increase parallelism, we have to increase the number of functional

units.

• Then, the internal storage and communication between functional units and

registers becomes dominant in terms of area, delay and power.

• There is internal bandwidth limitation.

Architecture of VLIW processors (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 447

• A solution is to restrict the connectivity between functional units and registers,

so that each functional unit can read/write from/to a subset of registers

(clustering).

Architecture of VLIW processors (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 448

• The number of functional units can be increased without needing additional

sophisticated hardware to detect parallelism, as in traditional parallel machines

(superscalar). So, VLIW machines requires less silicon area, lower cost and

smaller design/testing effort and time.

• VLIW require more sophisticated compilers than traditional architectures in

order to be able to extract parallelism and to keep the instructions full.

• In such a way the complexity is paid only once (when the compiler is written)

instead of every time the chip is fabricated.

• Improvements to the compiler can be made after chips has been fabricated,

while improvements in superscalar machines require changes to the hardware,

which naturally incurs all the expenses of chip design and fabrication.

• In VLIW machines, the compiler detects parallelism based on a global analysis

of the whole program, while in traditional parallel computers there is a need to

dynamically examine of large window of execution (set of instructions that is

considered for execution at a certain time) in order to know possible data,

resource or control dependencies between instructions that affect parallel

execution.

VLIW processors’ advantages

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 449

High complexity in traditional parallel
machines, not present in VLIW machines

Typical

superscalar

architecture

VLIW processors’ advantages (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 450

• The dispatcher examine a window of instructions contained in a buffer, and
decides which one can be passed to the execution units for parallel execution.

• More execution units require wider windows and a more complex dispatcher.

• To avoid waiting for conditional branches to be resolved, parallel computers
implement branch prediction. With branch prediction, the processor makes an
early guess about the outcome of the branch and begins looking for parallelism
along the predicted path.

• To be able to undo the effects of a branch execution in the case of a
misprediction, a hardware structure called a reorder buffer is employed.
This structure keeps track of all the results produced by instructions that have
recently been executed or that have been dispatched to execution units but
have not yet completed.

• The reorder buffer provides a place for results and when a conditional branch is,
in fact, resolved, the results of the executed instructions can be either dropped
from the reorder buffer (branch mispredicted) or written from the buffer to the
register bank (branch predicted correctly).

• The two above hardware resources are not needed in VLIW machines, due to
the presence of sophisticated compilers.

VLIW processors’ advantages (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 451

• Large number of registers needed in order to keep all functional units

active (i.e. to store operands and results).

• Large data transport capacity is needed between functional units and

registers and between registers and memory.

• High bandwidth between instruction cache and fetch unit. Example: one

instruction with 7 operations, each 24 bits leads to 168 bits per instruction.

• Large code size mainly due to unused operations (wasted bits in the

instruction word).

• Incomputability of binary code: if additional functional units are introduced,

the number of operations possible to execute in parallel is increased, the

instruction word changes and the old binary code cannot run on the new

version of the processor.

• Sophisticated compilers (and thus more expensive) are needed.

VLIW processors’ problems

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 452

• In order to keep all the functional units busy, compilers for VLIW

processors have to be aggressive in parallelism detection.

• In general, static scheduling of independent operations and

packaging of them into long instructions is followed.

• Loop unrolling is used by VLIW compilers in order to increase

the degree of parallelism in loops: several iterations of a loop

are unrolled and handled in parallel.

• Trace scheduling is applied to conditional branches: the compiler

tries to predict which sequence is the most likely to be selected

and schedules operations so that this sequence is executed as

fast as possible. Compensation code is added in order to keep

the program correct.

VLIW compilers

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 453

Data flow graphs of a program showing

data dependencies between operations
Scheduling and packaging

of operations in instructions

a b e

f c

d g

nop

nop

a b

c

d

e f

g

Static scheduling of independent operations

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 454

• Itanium (by Intel and HP) is not a pure VLIW
architecture, but many of its features are typical
for VLIW processors.

• Typical VLIW features:

 Instruction-level parallelism fixed at compile-time.

 Very long instruction word (128 bits).

Example 1: Itanium processor

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 455

Itanium processor’s architecture

128 integer registers,

128 FP registers and

8 branch registers of

64-bits each.

64 control registers of

1-bit each.

15 functional units:

4 integer ALUs,

4 multimedia ALUs,

2 FP units,

2 load/store units,

3 branch units.

10-stage pipeline.

control

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 456

• Three operations per instruction word. This does not mean that maximum three

operations can be executed in parallel. The three operations in the instruction

are not necessarily to be executed in parallel.

• The template indicates what can be executed in parallel. The encoding in the

template shows which of the operations in the instruction can be executed in

parallel. The template connects also to neighbouring instructions, so operations

from different instructions can be executed in parallel.

Itanium processor’s instruction format

Reg Reg Reg Reg

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 457

Itanium processor’s photograph

Translation Look-aside
Buffer (between I-Cache
and processor’s pipeline)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 458

• Crusoe (by Transmeta) is a pure VLIW architecture.

• Features:

 Instruction-level parallelism fixed at compile-time.

 Very long instruction word (128 bits): contain up to four

RISC-like instructions of 32-bits each.

 Two integer units, one floating-point unit, a memory

(load/store unit) and a branch unit.

 64 integer and 64 floating-point registers of 128-bits each.

 Includes the code morphing software: a dynamic translation

tool that compiles instructions of x86 architecture (CISC) into

instructions of VLIW (the processor has to dedicate some of

its cycles to running the translation).

Example 2: Crusoe processor

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 459

Crusoe processor’s photograph

Bus

Logic

Branch

Unit

(2)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 460

• C62x (by Texas Instruments) are VLIW-based DSP processors for

multimedia applications.

• Features:

 Instruction-level parallelism fixed at compile-time.

 Very long instruction word (256 bits): contain up to eight 32-

bits instructions.

 Eight independent functional units: six ALUs and two

multipliers.

 Uses load-store architecture.

 64 general purpose registers of 32-bits each.

 Contains two execution clusters with 32 registers each.

 Implements an 11-stages pipeline and all instructions are

conditional.

Example 3: C62x processors

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 461

VLIW vs. CISC vs. RISC

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 462

• VLIW architectures avoid hardware complexity (that exists in traditional

parallel architectures) by relying exclusively on the compiler for parallelism

detection.

• Not having to deal with parallelism detection, VLIW processors can have

a high number of functional units. This, however, generates the need for

a large number of registers and high communication bandwidth.

• In order to keep the large number of functional units busy, compilers for

VLIW processors have to be aggressive in parallelism detection.

• Static instruction scheduling, loop unrolling and trace scheduling are used

by compilers in order to increase the degree of parallelism in application

programs.

• Several modern processors (Itanium, Crusoe, C62x) have typical VLIW

features such as instruction-level parallelism at compile-time and long

instruction words.

Conclusions

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 463

7a. System-on-chip design and
prototyping platforms

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 464

• System-on-chip is an integrated circuit that implements most or all

of the functions of a complete electronic system, which solves an

embedded application.

• It is a heterogeneous system: may include hardware and software

parts, control and data-processing functionality, digital and analog

parts etc.

• Contains more than a single processor: memory modules, custom

circuitry, I/O peripherals, A/D or D/A converters etc.

What is System-on-Chip (SoC) ?

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 465

A typical SoC structure

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 466

• A microprocessor and its memory subsystem:

 Could be an 8-bit microcontroller core up to 64-bit RISC.

 The memory subsystem can be single or multi-levelled.

• A datapath with interfaces to the external system:

 The external interfaces can be bus drivers, Ethernet interfaces,

A/D – D/A converters, electro-mechanical converters etc.

• Blocks performing transformations on data received from the external

systems:

 Could be implemented by custom hardware and/or by DSP cores.

• Interface logic to peripherals.

Basic components of a SoC

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 467

• Programmable processor cores:

 Algorithms and protocols become increasingly complex, and

this makes their implementation in hardware difficult

 Modern processors are fast as a result of their sophisticated

design.

 Upgrading the software implementation is easy (flexibility).

• Custom hardware is still quite useful:

 High performance for time-critical task.

 Low energy consumption.

Basic components of a SoC (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 468

SoC structure for the implementation of a typical wireless

telecommunication application.

Typical SoC example

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 469

• System-on-chips now are technologically possible: today’s chips can contain up

to 100 million transistors (according to the Moores Law, approximately every 18

months the number of transistors on a single chip doubles).

• Higher performance: fast data transfer compared to board multi-chip designs.

• Lower energy consumption: multi-chip designs need additional drivers and

interfaces for inter-chip and inter-board connections.

• Reduced size: components connected on a PCB can now be integrated onto

a single chip.

• Lower cost.

• Increased reliability and design security.

Why do we need System-on-Chips ?

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 470

• Increased system complexity mainly due to the heterogeneity

(analog along with digital parts, processors along with custom

hardware, different memory types etc.), and due to the integrated

nature.

• This creates problems to the design phase (expertise in different

design areas is needed and the integration is a quite demanding

task), and to the technology (several processes have to be

incorporated onto a single die).

• Traditional hardware design methodologies does not work.

• Increased verification requirements.

• Design productivity vs. time-to-market pressure.

• Solutions to overcome complexity, low design productivity

and time-to-market pressure is to use advanced SoC design

methodologies and tools and mainly to re-use IP (Intellectual

Property) blocks in our SoC design.

Problems in SoC design

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 471

• IP-based design is the process of composing a new system by reusing

existing components.

• Possible IP blocks to be used:

 Microprocessors (ARM, MIPS, PowerPC, SPARC etc.)

 Interfaces (USB, PCI, UART etc.)

 Encoder and decoders (JPEG, MPEG, Viterbi etc.)

 Memories (SRAM, Flash etc.)

 Microcontrollers (HC11 etc.)

 DSPs (TI, Oak etc.)

 Transformers (FFT, IFFT etc.)

 Networking blocks (Ethernet, ATM etc.)

 Encryption blocks (DES, AES etc.).

• The increasing need of SoCs is forcing design houses and vendors to

develop high-quality IP blocks (a new industry has been developed !).

IP-based SoC design

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 472

IP-based SoC design (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 473

SoC design productivity and cost

20
06

20
04

20
02

20
00

19
98

19
96

19
94

19
92

19
90

19
88

19
86

19
84

19
82

200

400

600

800

1000

1200

G
a
te

s
 p

e
r

d
a
y

10% re -use

50% re -use

SoC

12.5 M

1200

~ 520

~ 8.5 K€

~ 4.5 M€

~ 4 M€

~ 8.5 M€

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 474

• How to specify an IP block for a reuse library: functionality,

timing information, interface properties, achieved speed,

power consumption etc.

• Much effort has to be allocated for:

 Specification, simulation, estimation and exploration.

 Integration (interfaces definition and implementation).

 Verification and testing for many operating conditions

and inputs.

Main issues in IP blocks design

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 475

Reusability
Flexibility

Integration effort

Predictability
Performance, Cost

Supplier effort

• Hard IP blocks:

Fully designed, placed and

routed by the supplier. It is

offered as a completely

validated layout with definite

timing characteristics and

offers fast integration but

low flexibility.

• Firm IP blocks:

Technology-mapped gate-

level netlist and offers flexibility

during place and route, but

with lower predictability.

• Soft IP blocks:

Synthesizable RTL or

behavioral descriptions.

Require much effort for

integration/verification, but

offers maximal flexibility.

Types of IP blocks

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 476

• Author: creator of the IP block

• Foundry: manufacturer

• Catalog: enables customers to

find and select the IP bock.

• Integrator: designs the SoC for

the customer.

Players in IP blocks design

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 477

IP block life cycle

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 478

• Authoring: Find the idea, create a model, perform high-level

validation, create simulation models to be delivered with the IP

block.

• Implementation: create hard of firm IP blocks.

• Delivery: Extract design characteristics (functionality, interfacing,

timing, power consumption, technology-related aspects,

compatibility aspects etc.) and put the block in an IP catalog

containing adequate search mechanisms.

• Integration: instantiate the block, build interfaces (interface logic

synthesis), verify (by simulation).

• Manufacturing: Fabrication and testing of the integrated circuit

composed by the implemented IP blocks.

• Note, that IP-based design is also a solution for improving software

design productivity. Reuse techniques and libraries of predefined

software modules (classes, functions) are not new in software.

IP block life cycle (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 479

SoC design flow

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 480

• Flexible architecture to implement the digital part of the physical layer

functionality of two wireless LAN standards (5 GHz band): HIPERLAN/2,

IEEE 802.11a.

• Implements the operations CL and ΜΑC/DLC of the HIPERLAN/2 and the

lower-MAC layer of the IEEE 802.11a standard.

• Contains two embedded microprocessors:

 ARM946E-S for the implementation of the high layers of the

HIPERLAN/2 standard.

 ARM7TDMI for the implementation of the lower-MAC layer of the

HIPERLAN/2 standard and for controlling the baseband modem

(transmitter/receiver) of the system.

• Also, includes a MAC hardware accelerator (custom block) that

implements critical functionality of the MAC layer of the IEEE 802.11a.

• Various peripherals: test and debug controller, power controller, Ethernet

and PCI interfaces, SDRAM controller, DMA controller, UARTs.

Example: Wireless LAN SoC

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 481

AMBA AHB (primary bus)

DMA
Controller

SDRAM & FLASH

Controller

Bus Bridge

Timers

Interrupt
Controller

Test and debug
Controller

Test

Port

ETHERNET
Interface UART

PCI
Controller

ETHERNET

Controller
SDRAM

ARM 946ES

core with

16KB Cache
Memory

ARM 7TDMI

core
SRAM

Baseband

Modem

MAC Hardware

Accelerator

(IEEE 802.11a)

RF

Controller Analog & RF
front-end

UART

Dual-port
SRAM

FLASH

PCI
Interface

Secondary bus

Watchdog

Power

Management

MAC/PHY
Interface

(HIPERLAN/2)

Example: Wireless LAN SoC (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 482

Fabrication

Design

Example: Wireless LAN SoC (cont’d)

EASY

TEST

CHIP

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 483

Example: Wireless LAN SoC (cont’d)

EASY
TEST

CHIP

20 MHz - 880 MHz - 5 GHz

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 484

Audio processing SoC (Siemens):

• 16-bit DSP

• Custom logic: 15,000 gates

• SRAM, ROM memory modules

• 1 Mbit DRAM

Second example: Audio processing SoC

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 485

• Prototyping platforms are used after the simulation (or as an alternative to the
simulation) in order to prototype the SoC design into an FPGA-based board,
before its fabrication.

• Main characteristics of prototyping platforms:

 Offer an accurate representation of the design since they are actual

implementations and not just simulations.

 Faster than simulations: they can reproduce a problem after several seconds

of execution, while in HDL simulation environments things are much slower.

 However, they are not exact replicas of the final SoC, and they cannot run

at the same frequency with the real silicon SoC.

 The design can be mapped relatively quickly (hours or days).

 Debugging support is usually included.

 However, tasks such as design partitioning (to the available FPGAs), clock tree

routing, bus handling and memory mapping are complex and difficult.

 Can be expensive for large designs, and sometimes they can lead to resource

bottleneck (a group have to wait for another group to finish using the platform).

Prototyping platforms

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 486

Contains a system board and up to 5 modules. The system board provide the AMBA bus and

other system functionality. Core modules allows the presence of ARM cores in the prototype

and logic modules provide user programmable logic elements (FPGAs).

Logic

module

Core

module

System

board

ARM

Example: ARM integrator platform

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 487

Major features of the system board:

• System control FPGA which

implements:

 System bus interface to core

and logic modules.

 System bus arbiter.

 Interrupt controller.

 Peripheral input and output

controllers.

 Timers.

 Reset controller.

 System status and control

registers.

• Clock generator.

• 32MB flash memory.

• Boot ROM.

• SRAM.

• System expansion, supporting core

and logic modules (up to 5 in total).

• PCI bus interface.

ARM integrator platform: System board

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 488

The major components on the

core module are as follows:

• ARM core (7 or 9 family).

• FPGA which implements:

 SDRAM controller.

 System bus bridge.

 Reset controller.

 Interrupt controller.

 Status & control registers.

• SSRAM (256KB) and plugged

SDRAM.

• SSRAM controller.

• Clock generator.

• System bus connectors.

• Debugging connectors.

ARM

ARM integrator platform: Core module

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 489

The logic module comprises of:

• Xilinx or Altera FPGA.

• Configuration PLD and flash

Memory for storing FPGA

configurations.

• 1MB SSRAM.

• Clock generators and reset

sources.

• Switches.

• LEDs.

• Prototyping grid.

• Debug connectors.

• System bus connectors

to a system board or other

modules.

ARM integrator platform: Logic module

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 490

RF board

IF board

Bottom Logic Module

A to D and D to A

conversion

board

Core Modules

Top Logic Module

ARM Integrator Motherboard

Antenna

• Two ARM7TDMI core modules (one implementing the upper layers of the protocol and the

second controlling the baseband modem and implementing the lower MAC protocol layer).

• Two logic modules with XILINX Virtex E 2000 FPGAs implementing the baseband modem

functionality. The average FPGA utilization was 87%.

Wireless LAN System-on-Chip prototyping

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 491

ARM

Major components:

• ARM processor (7 or 9)

• FPGA (XILINX Virtex

XCV2000E or ALTERA

APEX20K1000).

• 30 MHz system clock.

• 64MB SRAM, expandable

SDRAM up to 256MB.

• 8Mbyte FLASH and 2MB

high-speed SRAM.

• Multiple I/O interfaces:

PCMCIA, PCI, USB

• RS232 etc.

• AMBA bus components.

• RAM & FLASH controllers.

• Timers.

• UART.

• Interrupt controller.
CARMEN platform by SIDSA

Second example: Carmen platform

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 492

Second example: Carmen platform (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 493

• With the current technology and in the context of increasingly complex

applications and strong market pressure, system-on-chip is a natural

approach for several embedded applications.

• Programmable components provide the necessary flexibility and

custom hardware is needed for time-critical tasks implementation

and for low power consumption.

• The real bottleneck in SoC design is productivity.

• Solutions are the IP-based design (blocks reuse), and the improvement

of existing design methodologies and tools.

• Prototyping platforms (e.g. ARM Integrator, Carmen) are used after

the co-simulation (or as an alternative to the simulation) in order to

prototype and test the SoC design into an FPGA-based board,

before its fabrication.

Conclusions

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 494

7b. Reconfigurable systems

Department of Computer and Communication Engineering

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 495

Reconfigurable computing

• Reconfigurable computing refers to systems incorporating some form

of hardware programmability, that customizes how the hardware is

used using a number of physical control points.

• These control points can be changed periodically in order to execute

different applications using the same hardware.

• Since, the contradictory requirements of modern applications for both

flexibility and implementation efficiency, cannot be satisfied by

conventional instruction-set processors and application-specific circuits,

reconfigurable hardware offers a good balance between implementation

efficiency and flexibility.

• This is because the reconfigurable hardware combines post-fabrication

programmability with the parallel computation style of application

specific circuits, which is more efficient in comparison to the sequential

computation style of instruction-set processors.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 496

Reconfigurable hardware

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 497

• There are additional reasons for using reconfigurable resources in

System-on-Chip (SoC) design.

• The increasing non-recurring engineering (NRE) costs push designers

to use the same SoC in several applications and products for

achieving low cost per chip.

• The presence of reconfigurable resources allows the fine tuning of the

chip for different products or product variations.

• Also, the increasing complexity in future designs adds the possibility

of using design flows, which can require costly and slow redesign of

the chip. In this way:

 Reconfigurable elements are often homogenous arrays, which

can be pre-verified to minimize the possibility of design errors.

 Post-manufacturing programmability of reconfigurable elements

allows correction of problems later than the fixed hardware.

Reconfigurable hardware (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 498

• Logic reconfiguration.

• Instruction-set reconfiguration.

• Static reconfiguration or dynamic reconfiguration.

• Full or partial reconfiguration.

• Fine-grained, medium-grained and coarse grained

reconfiguration.

Types of reconfiguration

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 499

• A typical block for logic reconfiguration contains a look-up table (LUT),

an optional D flip-flop (latch) and additional combinational logic.

• The LUT allows any logic function to be implemented, providing generic

logic.

• The latch can be used for pipelining reasons, registers for holding logic

values or any other situation where clocking is required.

• The additional combinational logic is usually ‘carry logic’ used to speed

up carry-based computations (e.g. additions).

• The logic blocks located at the periphery of the reconfigurable device

(I/O blocks) can be of different architecture dedicated to I/O operations.

• In addition to operating as a function generator, each LUT can provide

RAM functionality.

• Furthermore, two or more logic blocks can be combined to implement

more complex functions.

Logic reconfiguration

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 500

Logic reconfiguration (cont’d)

Example of basic logic block

(Xilinx Virtex FPGA):

• Each FPGA slice

contains two basic

reconfigurable logic

blocks.

• The 4-bit look-up table

(LUT) is implemented

with a multiplexer

whose select lines are

the inputs of the LUT

and whose inputs are

constants.
SLICE

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 501

Logic reconfiguration (cont’d)

Basic architecture of a reconfigurable logic device (FPGA)
• The logic blocks are

grouped to matrices

overlaid with an

interconnection network

of wires.

• The reconfiguration of the

logic blocks is achieved

by using bits from an

SRAM memory to control

the state of the transistors

within the LUTs.

• The functionality is

modified by downloading

bit stream of

reconfiguration data

onto the hardware.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 502

• The concept of instruction-set reconfiguration refers to architectures

consisting of microprocessor and reconfigurable logic.

• The key benefit is the combination of software flexibility with hardware

efficiency.

• One promising approach is the use of reconfigurable instruction-set

processors (RISP), which have the capability to adapt their instruction

set to the application being executed through a reconfiguration in their

hardware.

• Through the adaptation, specialized hardware accelerates the execution

of the application.

• By moving the execution of some application tasks to the reconfigurable

part of the processor, a remarkable improvement in performance can be

achieved.

• One important issue is the type of interface between the microprocessor

and the reconfigurable logic.

Instruction-set reconfiguration

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 503

• Option 1: Use of a reconfigurable

functional unit (RFU) inside the

processor. The instruction

decoder issues instructions to the

RFU as it is one of the functional

units of the processor. The

communication cost is very small

and the speed improvement is

significant.

• Option 2: The reconfigurable logic

is placed next to the processor

(operating as a co-processor).

Communication is performed by

using a protocol.

Instruction-set reconfiguration (cont’d)

Memory

Co-processorP
ro

c
e
s
s
o
r

RFU

Main bus

Option 1

Option 2

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 504

• Static reconfiguration (often referred as compile-time reconfiguration) is

the simplest and most common approach for implementing applications

with reconfigurable logic.

• It involves hardware changes at a relatively slow rate, and consists of a

single system-wide configuration.

• Prior the execution of an application, the reconfigurable resources are

loaded with their respective configurations, and during the execution

of the operation, the reconfigurable resources will remain in the same

configurations (i.e. remain static) throughout the end of application

execution.

• Advantages: Higher performance than pure software implementation,

lower cost than specific hardware.

Static reconfiguration

Configure Execute

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 505

• In order to reconfigure a statically reconfigurable architecture,

the system has to be halted while the reconfiguration is in

progress and then restarted with the new configuration.

• Traditional FPGA architectures are primarily statically

programmed devices, allowing only one configuration to be

loaded at a time.

• This type of FPGAs is programmed using a serial stream of

configuration information (stored in an SRAM), requiring a full

reconfiguration if any change is needed.

Static reconfiguration (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 506

• Whereas static reconfiguration allocates logic for the duration of an

application, dynamic reconfiguration (often referred as run-time

reconfiguration) uses a dynamic allocation scheme that re-allocates

hardware at run time (i.e. during execution of the application).

• The physical hardware is smaller than the sum of required resources. With

dynamic reconfiguration we swap the number of configurations in and out

of the actual hardware, as they are needed.

• Problems: Divide the algorithms into time-exclusive segments that do not

need to run concurrently and manage the transmission of intermediate

results from one configuration to the next.

• Advantages: The benefits of static reconfiguration are remained, and we

can achieve an efficient trade-off between time and space (cost).

Dynamic reconfiguration

Configure Execute

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 507

• There are two different configuration memory styles that can be used with

dynamic reconfigurable systems.

• Single context device is a serially programmed device that requires a

complete reconfiguration in order to change any of the programming bits.

• Multi-context device has multiple layers of programming bits, each of which

can be active at a different point in time.

• In order to implement run-time reconfiguration onto a single context device

(FPGA), the different full configurations must be grouped into layers within

the configuration memory, and each layer is swapped in and out of the

FPGA as needed.

• Although, in single context devices, the reconfiguration of the hardware is

simple, there is a high-overhead when only a small part of the configuration

memory needs to be changed.

• Because in such devices only full reconfigurations are allowed, a good

partitioning of the different configurations between layers is essential.

Dynamic reconfiguration (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 508

• Multi-context architectures include multiple memory bits for each

programming bit location.

Dynamic reconfiguration (cont’d)

• One layer of configuration information can be active at a given moment,

but the device can quickly switch between different layers (contexts) of

already-programmed configurations.

• However, this method requires more area than single context structures,

since there must be many storage units per programming location.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 509

• In some cases, configurations do not occupy the full reconfigurable hardware,

or only a part of a configuration requires modification.

• In both of these situations, a partial reconfiguration of the reconfigurable

resources is desired, rather than the full reconfiguration supported by the serial

architectures (programmed using serial streams of reconfiguration information).

• Partially reconfigurable architectures use addresses (like a RAM device) to

specify the target location of the configuration data, allowing the selective

reconfiguration of the reconfigurable recourses.

• The undisturbed portions of the reconfigurable resources may continue

execution, allowing the overlap of computation (execution) with reconfiguration.

• Attention is required in order to manage the transmission of data between

the unchanged and changed portions of the reconfigurable resources.

• Partially, run-time reconfigurable architectures can allow complete

reconfiguration flexibility (Xilinx 6200) or may require a full array column

to be reconfigured at once (Xilinx Virtex).

Partial reconfiguration

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 510

• Granularity refers to the level of manipulation of data in reconfigurable

devices.

• There are three types of granularity: fine-grain which correspond to bit-

level manipulation of data, medium-grain manipulating data with varying

number of bits and coarse-grain which implies word-level operations.

• In fine-grained architectures, the basic programmable building block

usually consists of a combinational network and a few flip-flops.

• Each logic block can be programmed into a simple logic function (e.g.

full-adder), and the blocks are connected through an interconnection

network.

• Commercially available FPGAs (Xilinx, Altera etc.) are based on fine-

grained architectures.

• Although highly flexible, these systems exhibit low efficiency in terms of

speed and area.

Granularity of building blocks

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 511

• Reconfigurable systems which use logic blocks of larger granularity

are categorized as medium-grained.

• For example, Garp architecture has been designed to perform

arithmetic computations with up to four 2-bit inputs, while Chess

architecture operates on 4-bit values with each of its cells acting

as a 4-bit ALU.

• The major advantage of medium-grained systems, in comparison with

fine-grained systems, is that they better utilize the chip area, since

they are optimized for specific operations.

• However, a drawback is the high overhead that is inserted when

synthesizing operations which are incompatible with the simplest

logic block architecture.

Granularity of building blocks (cont’d)

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 512

• Coarse-grained architectures are intended for the implementation

of tasks dominated by word-width operations.

• Because the used logic blocks are optimized for ‘large’ computations,

they will perform these operations much more quickly (and by

consuming less area) than a set of smaller cells connected to form

the same structure.

• However, they exhibit low flexibility.

• For example, RaPiD device is composed of 16-bit adders, multipliers

and registers. If only 1-bit values are required, then the use of this

device has an unnecessary area and speed overhead, as all 16 bits

are computed.

• Such architectures can be much more efficient than fine-grained and

medium-grained architectures, for implementing functions closer to

their basic word size.

Granularity of building blocks (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 513

• FPGAs (Filed-Programmable Gate Arrays):

 Currently represent the most popular segment of reconfigurable devices.

 They can be reconfigured in seconds either statically or dynamically/partially.

 Advantages: react to last minute design changes in order to correct errors or
upgrade functions, useful for prototyping ideas before implementation and for

meeting time-to-market deadlines.

• Integrated circuit devices with embedded reconfigurable resources:

 Represent an alternative to FPGAs.

 They are based on a combination of a programmable CPU and a
reconfigurable array of word-level data path units.

 Also, called hardware-software design platforms, they increases the
productivity and the success probability, and reduces the design time in
comparison with custom SoC designs.

• Embedded reconfigurable cores: reconfigurable cores are embedded in a single

SoC/ASIC.

Reconfigurable devices

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 514

FPGAs

• In FPGAs, the logic

blocks are grouped to

matrices overlaid with an

interconnection network

of wires.

• The reconfiguration of the

logic blocks is achieved

by using bits from an

SRAM memory to control

the state of the transistors

within the LUTs.

• The functionality is

modified by downloading

the reconfiguration data

onto the hardware.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 515

• Virtex 4 is one of the new
generation FPGA from Xilinx.

• Each configurable logic block
(CLB) is made up of 4 slices.

• Each slice contains 2 LUTs, 2
storage elements, carry look-
ahead circuitry and few
multiplexers.

• Each CLB has internal fast
interconnect and connects to a
switch matrix to access general
routing resources.

Xilinx Virtex 4 FPGA

• Includes enough RAM resources for running complex applications, has logic density
up to 200K logic slices and can achieve clock rates up to 500MHz.

• Fine-grained architecture with embedded word-level modules (multipliers),
supporting dynamically (partially) reconfiguration.

• Technology: 90nm CMOS with 1.2 Volts supply voltage.

SLICE

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 516

• Similar logic structure consisting
of logic array blocks (LAB).

• Each LAB contains 8 adaptive
logic modules (ALM).

• Each ALM contains 2 LUTs of
4-inputs and 4 LUTs of 3 inputs,
2 storage elements, carry look-
ahead circuitry and few
multiplexers.

• Each LAB has internal fast
interconnect and connects to
the rest array.

Altera Stratix II FPGA

ALM

• Includes enough RAM resources for running complex applications, has logic density
up to 80K ALMs and can achieve clock rates up to 500MHz.

• Fine-grained architecture with embedded word-level modules (multipliers), supporting
static (serially or parallel) reconfiguration.

• Technology: 90nm CMOS with 1.2 Volts supply voltage.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 517

• Custom SoC designs have very high cost, making them practical only when we
have production of a very large number of chips (millions).

• IC devices with embedded reconfigurable devices (also called hardware-software
design platforms) have quite less cost, providing developers with an alternative
solution to custom SoCs and standard processors with external peripherals.

• Hardware-software design platform is a stable SoC architecture for a target
application or family of applications that is based on a combination of a
programmable CPU and a reconfigurable array of data-path units.

• It can be extended and customized relatively fast and easy.

• The use of such platforms increases the productivity and the success probability,
and reduces the design time.

• Derivative designs (implementing similar applications) can be easily created by
using software or hardware modifications.

• Diverse applications each requires a different platform (it is difficult to use the same
platform for a telecom application where the control functionality is dominant and for
a multimedia application where the data-processing tasks are dominant).

IC devices with embedded reconfigurable resources

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 518

Hardware-software platforms design concept

Predesigned and preverified

IP blocks catalog
Hardware-software design platform

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 519

• Triscend A7 is a 32-bit
configurable system-on-chip.

• Combines a 32-bit ARM7TDMI
embedded processor core with
a flexible Configurable System
Logic (CSL) matrix (statically
configurable), a robust memory
subsystem, a high-performance
custom internal bus, and other
system peripheral functions
onto a single chip.

• Triscend also offers
development tools that
integrates third-party EDA and
processor development tools for
rapidly development of a SoC
covering specific application
needs.

Triscend A7 platform

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 520

Detailed architecture

Triscend A7 platform (cont’d)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 521

• Excalibur platform integrates a 32-bit
ARM922T embedded processor with
associated caches and a memory
management unit.

• Contains single and dual-port RAM
modules, memory controllers, several
peripherals (UART, timers, interrupt
controller) and debugging modules.
Supports the AMBA bus architecture
by containing two buses with
dedicated bus bridges.

• The FPGA section contains Altera’s
PLD devices (static, fine-grained
architecture), which can contain
4,160 to 38,400 logic elements or
100K to 1M gates. FPGAs with such
densities provide access to a wide
range of IP functional blocks and
interfaces.

Altera Excalibur platform

DAP
DNA

DNA

DIRECT

INTERFACE

HIGH-SPEED BUS

MEMORY

JTAG UART

Trace
module

Altera Excalibur

Programmable
Logic

Device
(PLD)

PLD I/O
Memory

Interface

Timers

SRAM

ARM9
Processor

Dual-port
SRAM

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 522

Altera Excalibur platform (cont’d)

Detailed architecture

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 523

Atmel FPSLIC platform

• Atmel’s Field
Programmable
System-level IC
integrates the
Atmel’s AVR 8-bit
RISC processor with
an Atmel’s AT40K
FPGA, and several
peripherals.

• The FPGA part is
based on a fine-
grained architecture
and allows dynamic
full or partial
reconfiguration.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 524

IPflex DAPDNA-2 platform

• IPpflex platform combines
the IPflex’s DAP RISC core
(32-bit with 8KB data
cache and 8KB instruction
cache) with the DNA
matrix-based device and
several interfaces.

• The DNA matrix is a
coarse-grained
architecture, allows
dynamic reconfiguration
and contains 376
processing elements
comprised of computation
units, memory and
counters.

DAP

RISC
CORE

DNA

MATRIX

DNA

DIRECT

I/O

INTERFACE

HIGH-SPEED BUS

MEMORY

INTERFACE

PERIPHERAL

EXTERNAL BUS

EXTERNAL

MEMORY
PERIPHERAL DEVICES

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 525

MorphoSys platform

• MorphoSys platform contains
a Tiny RISC processor that is
a 4-stage pipeline, MIPS-like
RISC machine with 16 32-bit
registers, 32-bit ALU/shift unit
and on-chip data cache
memory

• The reconfigurable array
consists of an 8x8 matrix of
Reconfigurable Cells (RC).

• Each RC comprises an ALU-
Multiplier, a shift unit, input
multiplexers, and a register
file with five 16-bit registers.

• The array is based on a
coarse-grained architecture,
that allows dynamic
reconfiguration.

Academic approach:
University of California at Irvine

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 526

picoChip platform

picoChip platform consists

of an array of RISC-like

processors (picoArray)

and peripherals (external

microprocessor interface,

external memory interface,

interfaces allowing multiple

arrays to be connected

together).

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 527

picoChip platform (cont’d)

The array contains

322 elements; 308

processors (16-bit

architecture with 3-

way LIW and local

memory) and 14

co-processors, all

connected by

programmable

interconnect

modules.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 528

Processor types in the array

picoChip platform (cont’d)

Units for implementing specific functions that are useful for digital signal

processing (e.g. trellis operations for FEC decoding etc.)

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 529

Config.
Memory

picoChip platform (cont’d)

Processor structure

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 530

picoChip platform (cont’d)

• The flexible nature of the

picoArray technology

allows the implementation

of several communications

standards (IEEE 802.11 -

wireless LAN, IEEE802.16

- outdoor wireless).

• The physical layer is

implemented on the

arrays, while the MAC

layer of the standards is

implemented on a

PowerPC external

processor.

• An encryption engine

implementing basic

standards is also

available.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 531

• Embedded reconfigurable cores are hardware cores with

programmable capabilities that can be embedded in several

SoCs and ASICs.

• Embedded reconfigurable cores provide:

 Hardware flexibility in implementing multiple applications.

 Lower power consumption than the programmable processors.

 Lower hardware cost.

• For example, the array of reconfigurable cells contained in the

MorphoSys platform is available as an autonomous IP block for

integration in SoCs or ASICs.

Embedded reconfigurable cores

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 532

Conclusions

• Reconfigurable hardware offers a good balance between

implementation efficiency and flexibility, by combining characteristics

of both instruction-set processors and application-specific circuits.

• Reconfigurable hardware is also used for achieving lower cost and

lower design effort and time than specific circuits, and better

performance (speed and power consumption) than instruction-set

processors.

• Several types of reconfiguration can be used: logic reconfiguration,

instruction-set reconfiguration, static reconfiguration or dynamic

reconfiguration, full or partial reconfiguration, fine-grained, medium-

grained or coarse grained reconfiguration.

• Several reconfigurable devices are available: FPGAs, integrated

circuit devices with embedded reconfigurable resources or hardware-

software design platforms, and embedded reconfigurable cores.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 533

8. Communication in embedded
systems

Department of Computer and Communication Engineering

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 534

• Processing:

 Used to transform data.

 Implemented using programmable processors and custom

hardware blocks.

• Storage:

 Used to maintain data.

 Implemented using memory modules.

• Communication:

 Used to transfer data between processors, custom hardware

blocks, peripherals and memories within a system.

 Implemented using system buses.

 Examples: Common forms of communication are when a

processor read or writes a memory or when a processor

reads or writes a peripheral’s register.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 535

• A bus consists of wires connecting two

or more blocks (processors, memories,

custom blocks etc.).

• Each wire may be unidirectional

(read/write, enable, address) or

bi-directional (data).

• One line may represent a set of wires

(address, data).

• A bus has an associated protocol

describing the rules for transferring

data over its wires.

Simple processor-memory bus

Processor Memory

read/write

enable

Address [0-N]

Data [0-M]

BUS

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 536

• A system bus may support the following transfers:

 Memory to processor: the processor reads instructions and data from memory.

 Processor to memory: the processor writes data to memory.

 I/O (or custom block) to processor: the processor reads data from the I/O

module (e.g from the register of the I/O module).

 Processor to I/O: the processor writes data to the I/O device.

 I/O to or from memory: I/O module allowed to exchange data directly with

memory without going through the processor (DMA).

System bus

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 537

• Address lines and data lines.

• Control lines:

 Memory write: data on the bus written into the addressed location.

 Memory read: data from the addressed location placed on the bus.

 I/O write: data on the bus output placed to the addressed I/O port.

 I/O read: data from the addressed I/O port placed on the bus.

 Bus REQ: indicates a module needs to get control of the bus.

 Bus GRANT: indicates that the requesting module has been granted bus control.

 Interrupt REQ: indicates that an interrupt is pending.

 Interrupt ACK: Acknowledges that pending interrupt has been recognised.

 Reset: initialises everything connected to the bus.

 Clock: on a synchronous bus everything is synchronized to this signal.

System bus

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 538

• The most common way to describe a hardware

bus protocol is through timing diagrams.

• In a timing diagram control signals are either

high or low, while data or address lines can be

either invalid (a single horizontal line) or valid

(two horizontal lines).

• For the simple bus (processor-memory), the

processor must set the read/write signal to low

for a read operation to occur.

• When the enable signal is high, triggers the

memory to put data on the data lines after tread,

and the processor must place the address on

the address lines at least tsetup before setting

the enable line high.

• For a write operation the read/write signal is

set to high.

• The data must be valid tsetup before the set of

the enable signal that triggers the memory to

accept the data from the data lines after twrite.

Write protocol

Read protocol

tsetup tread

read/write

enable

address

data

read/write

enable

address

data

tsetup twrite

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 539

Serializing of data Mixing of address and data

Data

Master Slave
REQ

Data(8)

Data(15:0) Data(15:0)

MUX DEMUX

REQ

15:8 7:0 Address/Data

Master Slave

Address/Data

REQ

Address Data

MUX DEMUX

Address Data

Address Data

REQ

• A bus protocol typically involves two actors: master and slave. The master

initiates the data transfer & the slave responds to the initiation request.

Usually, in a processor-memory bus, master is the processor and slave is

the memory (i.e. the memory cannot initiate a data transfer).

• In each data transfer one actor is the sender and another one is the receiver

(independently from who is master and who is slave). This data direction is

also defined by the bus protocol.

• A protocol has to be able to handle address and regular data.

• Another protocol concept is multiplexing: share a set of wires to multiple data

pieces. The most common ways are: serializing and mixing.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 540

Strobe protocol Handshake protocol

1. Master set REQ to receive data.

2. Slave puts data on bus within time taccess.

3. Master receives data and resets REQ.

4. Slave ready for next request.

1. Master sets REQ to receive data.

2. Slave puts data on bus and sets ACK.

3. Master receives data and resets REQ.

4. Slave ready for next request.

REQ

Data

Slave

REQ

Data

taccess

1

2

3

4

Master Master Slave

REQ

ACK

Data

REQ

Data

ACK

1

2

3

4

Master: I want the data on the data bus
soon and let me know when it’s ready.

Master: I want the data on the data
bus after a predefined access time.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 541

Master Slave

REQ

WAIT

Data

REQ

Data

WAIT

1 3

42

taccess

REQ

Data

WAIT

1

3

4

2

taccess

5

1. Master set REQ to receive

data.

2. Slave puts data on bus

within time taccess (WAIT

line is unused).

3. Master receives data and

resets REQ.

4. Slave ready for next

request.

1. Master sets REQ to receive

data.

2. Slave cannot put data on bus

within taccess and sets WAIT.

3. Slave puts data on bus and

resets WAIT.

4. Master receives data and

resets REQ.

5. Slave ready for next request.

Master: I want the data
on the data bus after a
predefined access time
and if you cannot finish
by then let me know
that, and then let me
know when it’s ready.

• A handshake protocol can adjust to a slave with varying response times, unlike

the strobe protocol. However, when response time is known, the handshake

protocol is slower and requires an extra line for acknowledge.

• To achieve both speed and varying response time advantages, a compromise

protocol is often used (two cases: fast response and slow-response cases).

Example: ISA (Industry Standard
Architecture) bus protocol

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 542

• The most common communication in embedded

systems is the input & output of data to and from a

processor during the communication with peripherals.

• Some processors communicate with the peripherals

through ports and not through a system bus. A port

is connected to a dedicated register that can be read

and written just like any register in the processor

(parallel or port-based communication).

• Often, the implementation of an embedded application

requires more ports than those available on a particular

processor, and then an extended parallel I/O peripheral

can be used.

• In other cases, the system may require parallel

communication with some peripherals, but the

processor may only support a system bus.

• In this case a parallel I/O peripheral can be used

(connected to the system bus on one side and has

several ports to the other side which are connected to

registers inside the peripheral accessible by the

processor).

Processor

Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 543

• In 8051, the address space is 64KB, thus it is addressable with 16 bits through ports P0
(LSBs) and P2 (MSBs). P0 is also used for the eight LSBs of data.

• The microcontroller places the memory address to be read, on ports P0 and P2.

• P2 holds the 8 address MSBs and retains its value throughout the read operation. P0
holds the 8 address LSBs that is stored inside the 8-bit latch.

• The ALE (address latch enable) signal is used to trigger the latching of P0.

• 8051 sets high impedance on P0 to allow the memory to drive it with the requested data.

• The memory outputs valid data as long as RD is active, and 8051 reads them.

P0 D Q

8

P2

ALE G

A<0...15>

D<0...7>

/OE

/WE

/CS

/WR

/RD

/CS1

/PSEN

CS2

/CS

A<0...15>

D<0...7>

/OE

Communication of 8051 (8-bit) controller with memories

8

8-bit

LATCH

32KB EPROM

8KB SRAM

P0

P2

Q

ALE

/RD

Address 7…0

Address 15…8

Address 7…0

Data 7…0

Memory read process

8051

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 544

• Three main issues regarding the communication of a processor

with the peripherals through a system bus are:

 The addressing procedure: how the system address map is

used in order the processor to communicate with the memory

and the peripherals.

 The interrupt-driven communication: the processor accepts

interrupt signals in order to read and process data from a

peripheral.

 The direct memory access (DMA) for transferring data between

memories and peripherals, without going through the processor.

 Arbitration: how to handle simultaneous servicing requests of

peripherals.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 545

• The system bus is a set of wires consisting of address, data and control wires,

and the processor uses the bus to access the memory as well as the peripherals.

• The processor may use two methods for communication over a system bus:

 The memory-mapped method: the peripherals occupy specific addresses in

the existing system address space. For example, in a bus with 16-bit address

the lower 32K addresses may correspond to memory addresses, while the

upper 32K may correspond to peripheral addresses.

 The standard (or I/O-mapped) method: the bus includes an additional line

(pin) to indicate whether the processor’s access is to memory or to a peripheral.

For example, when this specific signal is 0, the address bus corresponds to

a memory address, and when the signal is 1, the address corresponds to a

peripheral.

• In the memory-mapped method, the processor does not need special instructions for

communicating with peripherals, and the assembly instructions involving memory will

also work for peripherals (addresses can correspond to memory locations or

peripherals’).

• In the standard method there is no loss of memory addresses to be used for the

peripherals. Also, simpler address decoding logic can be used within the peripherals,

since the peripherals’ number is smaller than the address space and the high-order

address bits can be ignored.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 546

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/ MEMR

CHRDY

C1 C2 WAIT C3 C4

DATA

Memory read bus operation

CYCLE

CLOCK

D[7-0]

A[15-0]

ALE

/ IOR

CHRDY

C1 C2 WAIT C3 C4

DATA

ADDRESS

Peripheral read bus operation

• ISA bus supports standard or I/O-

mapped method:

 The signal /IOR is used

instead of /MEMR for

peripheral read (also there

is a signal /IOW for the write

operation).

 16-bit address space is

used for I/O, while 20-bit

address space is used for

the memory addressing.

 The two protocols (for

the communication of the

memory and peripherals

with the processor) are

very similar.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 547

• Suppose that a peripheral gets new data at unpredictable intervals, which must be
serviced by the processor. There are two ways to carry out this procedure:

 The processor can check the peripheral regularly to see if data has arrived.

 This is achieved by interleaving the other tasks of the processor with
a routine that checks for new data in a peripheral (perhaps by checking
for a true value ‘1’ in a register of the peripheral).

 Costly in terms of clock cycles, especially in case of many peripherals.

 The processor could check at less frequent intervals, but then it may not
process the data fast enough.

 The peripheral can interrupt the processor when it has new data (interrupt-
driven I/O communication).

 The processor requires an extra pin (Int).

 At the end of each instruction, the processor checks Int and if is set, the
processor jumps to a particular address at which a subroutine (ISR)
exists that services the interrupt.

 The checking of the Int pin is performed by the control unit of the
processor in parallel with the instruction execution, so no extra cycles are
needed.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 548

• There are two methods by which a processor using interrupts determines
the address at which the interrupt service routine (ISR) is located.

First method: Fixed ISR location

• In some processors, the address to which the processor jumps on an
interrupt is fixed. The programmer either puts the ISR there or if not
enough bytes are available in that region of memory, puts there a link
to the real ISR.

• In processors with fixed ISR addresses, several interrupt pins are needed
to support interrupts from multiple peripherals.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 549

3: After completing instruction at

location 100, the processor
detects the set of Int, saves the

PC’s value (100), and sets the PC

to the ISR fixed location (16).

5: The ISR returns, thus restoring

PC to the location 100+1=101, in

order the processor to continue

executing the main program

4b : After being read, the

Peripheral 1 resets Int.

1a : The processor is executing its

main program.

1b : Peripheral 1 receives

input data in a register

with address 0x8000.

2: Peripheral 1 sets Int to

request servicing by the

processor.

4a : The ISR reads data from
0x8000, modifies the data, and

writes the resulting data to

0x8001.

μP

P1 P2

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
... PC

Int

100100

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Processor

Peripheral

1

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

...

... PC

Int

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

...

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

...

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

Main program

Program memory

Peripheral

2

Example

Data received by Peripheral 1 must

be read, transformed and then written

to Peripheral 2. Peripheral 1 might

represent a sensor & Peripheral 2

might represent a display.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 550

Second method: Use of vectored interrupt to determine the ISR location

• This approach is especially common in systems with a system bus,
since there may be numerous peripherals that can request service.

• In this method the processor has one interrupt pin, which any peripheral
can set.

• After detecting the interrupt, the processor set another pin to inform
the peripheral that it has detected the interrupt and to request from
the peripheral to provide the location (address) of the Interrupt Service
Routine (ISR).

• The peripheral provides the address of ISR on the data bus, and the
microprocessor reads the address and jumps to the ISR.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 551

1a: the processor is executing its main
program

3: After completing instruction at location
100, the processor detects the set of INt,

saves the PC's value (100), and sets Inta

5a: The processor receives the ISR

address from the data bus, jumps to this
address. The ISR reads data from

0x8000, modifies the data, and writes the
resulting data to 0x8001

6: The ISR returns , thus restoring PC to

100+1=100 in order the processor to
continue executing the main program

1b: Peripheral 1 receives input

data in a register with address
0x8000

2: Peripheral 1 sets Int to request

servicing by the processor

5b: After being read, the
Peripheral 1 resets Int

4: Peripheral 1 detects the set of
Inta and puts interrupt address

vector (16) on the data bus

μP

P1 P2

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
... PC

Int

100100

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Processor

Peripheral
1

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

...

...

PC

Int

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

...

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

...

16: MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

100:

101:

instruction

instruction

MOV R0, 0x8000
17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

Main program

Program memory

Peripheral
2

Inta

Example

Data received by Peripheral 1 must

be read, transformed and then written

to Peripheral 2. Peripheral 1 might

represent a sensor & Peripheral 2

might represent a display.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 552

• As a compromise between fixed and vectored interrupt methods, we

can use an interrupt address table.

• In this method , we still have only one interrupt pin on the processor,

but we also create in the processor’s memory a table that holds ISR

addresses (a typical table might have 256 entries).

• A peripheral rather than providing the ISR address, instead provides

a number corresponding to an entry in the interrupt address table.

• The processor reads this entry number from the bus, and then reads

the corresponding table entry to obtain the ISR address.

• Compared to the memory, the table is very small, so the number of bits

required to encode an entry is small, thus reducing the communication

complexity.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 553

• Commonly, the data being accumulated in a peripheral should be first

stored in memory before being processed by a program running on the

microprocessor.

• Such temporary storage before processing is called buffering.

• To implement buffering, we could write a simple ISR on the processor

such that the peripheral would interrupt the processor whenever it had

data to be stored in the memory.

• The ISR will simplify transfer data from the peripheral to the memory,

and after that the processor will continue with its regular program.

• However, the jump of the processor to an ISR requires the storing of the

processor’s state (registers content), and then the restoring of its state

when returning from the ISR.

• The storing and restoring procedures and the fact that the processor

cannot execute its regular program while moving the registers content,

lead to important inefficiency (in terms of consumed clock cycles).

• In order to eliminate such inefficiency, the Direct Memory Access (DMA)

method is used.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 554

• In the DMA method, we use a controller (DMA controller), whose

purpose is to transfer data directly between memories and peripherals.

• A peripheral requests servicing from the DMA controller, which then

requests to get the control of the system bus from the processor.

• The processor has just to give the control of the bus to the DMA

controller and do not need to jump to an ISR and to store and restore

its state.

• The processor can execute its regular program while the DMA controller

has the control of the bus, as long as the regular program does not

require use of the bus (if this occur the processor have to wait for the

DMA controller to complete).

• A system with a separate bus between the processor and cache may

be able to execute parts of its regular program from the cache while

the DMA controller has the control of the system bus.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 555

1a: The processor is executing
its main program. It has already

configured the DMA controller
registers.

1b: Peripheral 1
receives input data
in a register with
address 0x8000.

2: Peripheral 1
sets req to request
servicing by the

DMA controller.

7b: Peripheral 1
resets req.

3: DMA controller sets

Dreq to request
control of system bus.

4: After executing instruction at
location 100, the processor
detects the set of Dreq, releases
the system bus, sets Dack and
continues execution. The

processor stalls only if it needs
the system bus to continue
executing the main program.

5: DMA controller
sets ack, reads
data from 0x8000
and writes that data
to the memory.

6: DMA resets Dreq
and ack completing
handshake with
Peripheral 1.

7a: Processor resets Dack and
resumes control of the bus.

μP

P1 P2

0x8000 0x8001

ISR

100:

101:

instruction

instruction

...

Main program
... PC

Int

100100

ISR

100:

101:

instruction

instruction

...

Main program
...

100

Processor

DMA

Controller

System bus

Data memory

100:

101:

instruction

instruction

...

PC

Dreq
100:

101:

instruction

instruction

...

100:

101:

instruction

instruction

...

100:

101:

instruction

instruction

No ISR is needed

100:

101:

instruction

instruction

Main program

Program memory

Peripheral

1

Dack

0x0000 0x0001

0x0001

0x8000
0x8000

ack

req

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 556

• In embedded systems communication, several situations exist in

which multiple peripherals might request service from a single resource

(interrupt requests to a processor, DMA requests to a DMA controller

etc.).

• It is necessary to have a method to arbitrate among the simultaneous

servicing requests of the peripherals, i.e. to decide which one of the

peripherals will get service and thus which peripherals need to wait.

• One arbitration method uses a module called priority arbiter: each of

the peripherals makes its request to the arbiter and the arbiter send an

interrupt to the processor and waits for the interrupt acknowledgment.

• The arbiter then provides an acknowledgment to exactly one

peripheral, which permits to that peripheral to put its interrupt vector

address on the data bus.

• This causes the processor to jump to a ISR that services that specific

peripheral.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 557

Micro-

arbite

r

System bus

In
t 3

5
7

Int
a

Iack
2

2 2

6

Processor

Priority
arbiter

Int
3

5
7

Inta
Peripheral

2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

Peripheral

1

1. Processor is executing its program.

2. Peripheral1 needs service so sets Ireq1. Peripheral2 also needs service & sets Ireq2.

3. Priority arbiter detects that at least one Ireq input is set, so sets Int.

4. Processor stops executing its program and stores its state.

5. Processor sets Inta.

6. Priority arbiter sets Iack1 to acknowledge Peripheral 1.

7. Peripheral 1 puts its interrupt address vector on the system bus.

8. Processor jumps to the address of ISR read from data bus, ISR is executed & returns.

9. Processor resumes executing its program.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 558

• Priority arbiters use one of two schemes to determine priority among the

peripherals:

 In fixed priority arbitration, each peripheral has an unique rank among

all the peripherals. The rank can be presented as a number (1, 2, 3 …),

so if two peripherals ask for service simultaneously, the arbiter chooses

the one with the higher rank.

 In rotating priority arbitration (also called round-robin), the arbiter

changes priority of peripherals based on the history of servicing of those

peripherals. For example, a rotation priority scheme offer service to the

least-recently serviced of the requesting peripherals (more complex

arbiter functionality).

• We prefer fixed priority when there is a clear difference in priority among

peripherals (different nature of peripherals), however, in many cases the

peripherals are somewhat of same nature, so by ranking them could case

high-ranked peripherals to get much more servicing than low-ranked ones.

• Rotating priority ensures a more fair distribution of servicing in these cases.

Embedded Systems
Department of Computer & Communication Engineering L. Bisdounis 559

Daisy-chain arbitration

m

In

t

Int
a

Ack_
in

Ack_o
utReq_

out

Req_

in

Ack_
in

Ack_o
utReq_

out

Req_

in
0

System bus

Ack_in

Req_out

Peripheral2

Ack_in Ack_out

Req_out Req_in

Processor

Int

Inta
Peripheral1

Ack_out

Req_in

• In daisy-chain arbitration, arbitration is done by the peripherals.

• Apart from request output and acknowledge input, each peripheral has also a request
input and an acknowledge output.

• A peripheral sets its request output if it requires servicing or if its request input is set.
The second event means that one of the previous (at the right) peripherals is
requesting servicing.

• Thus, if any peripheral needs servicing, its request will flow through the next (at the
left) peripherals and eventually will reach the processor.

• The peripheral at the front of the chain (nearest to the processor) has the highest
priority.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 560

• We prefer the daisy-chain arbitration method over a priority arbiter, when

we want to be able to add or remove peripherals from an embedded system

without redesigning the system.

• Although, we can add many peripherals to a daisy chain, in reality the

servicing response time of the peripherals at the end of the chain will

become very slow.

• In contrast of a daisy-chain scheme, a priority arbiter has a fixed number of

channels (the system needs redesign in order to accommodate more

peripherals).

• However, the daisy-chain method has the drawback of not supporting more

advanced priority schemes, like rotating priority.

• In addition, if a peripheral in the chain stops working, other peripherals may

lose their access to the processor.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 561

Network arbitration methods

• Many embedded systems contain multiple processors communicating via

a shared bus (sometimes is called network).

• Arbitration in such cases is built into the bus protocol.

• A processor that wants to write to the bus has no way to know whether

another processor tries to simultaneously write to the bus. These situations

lead to collisions and cause data on the bus to be corrupted, and thus the

data must be resent to the bus.

• The processors detect this collision, stop transmitting data, wait for some

time and then try to transmit again.

• The bus protocol must ensure that the requesting processors do not start

sending data again at the same time or must use statistical methods that

make small the chances of them sending again at the same time.

• Another solution is the use an address encoding scheme such that if two

addresses are written simultaneously by different processors using a bus,

the highest-priority address will overwrite the lower-priority one.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 562

• A processor-based system can have numerous types of communications that
must take place, varying in their speed requirements.

• The most frequent and high-speed communications are between the processor
and its memories, while less frequent communications requiring less speed are
between the processor and its peripherals (e.g. UART).

• We can implement a single high-speed bus for all communications, but this
requires each peripheral to have a high-speed bus interface.

• Since a peripheral may not need such high-speed communication, having such
an interface will lead in extra gates, energy and cost.

• In addition, having too many peripherals on a single bus may result in a slower bus.

• Systems are often designed with two levels of buses: a high-speed processor bus,
and a lower-speed peripheral bus.

• The processor bus typically connects the processor, cache memory, memory
controllers and high-speed co-processors (memory-word size).

• The peripheral bus connects lower-speed peripherals and emphasize to the
portability and the low energy consumption of the peripherals.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 563

• A bridge connects the two buses: custom processing block that converts
communication on the processor bus to communication on the peripherals
bus and vice versa.

• For example, the processor may generate a read on the processor bus with
an address corresponding to a peripheral. The bridge detects that the address
corresponds to a peripheral and generates a read on the peripheral bus.
After receiving the data, the bridge sends them to the processor.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 564

• Serial communication: the bus transports one bit of data at a time, through

a single data wire.

 Offers high data throughput for long distances.

 It needs less wiring, exhibits less capacitance resulting in low power consumption

and it is cheaper.

 It requires more complex interfacing logic and protocol: the sender needs to

decompose the data words into bits, and the receiver needs to recompose the data

bits into words. In addition, the control signals often are sent on the same wire with

data, increasing protocol complexity.

• Parallel communication: the bus is capable to transport multiple bits of data at

a time (multiple wires, one bit per wire).

 Offers high data throughput for short distances.

 Typically, it is used when connecting devices on the same IC or on the same board.

 It needs more wiring and it is more expensive.

 In case of long wires the result will be high capacitances (charge/discharge delays

and high power consumption).

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 565

• I2C (Inter-IC) bus by Philips Semiconductors:

 Two-wire serial bus protocol.

 Enables peripheral ICs to communicate using simple communication

hardware.

 Data transfer rates up to 100 Kbits/s and 7-bit addressing possible in

normal mode.

 3.4 Mbits/s and 10-bit addressing in fast-mode.

 Common devices capable of interfacing to I2C bus: EPROMS, Flash,

RAM memory modules, timers and microcontrollers.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 566

• PCI Bus (Peripheral Component Interconnect) by Intel:

 High performance parallel bus.

 Standard widely adopted by industry.

 Interconnects chips, expansion boards, processor memory subsystems.

 Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing.

 It has already been extended to 64-bit while maintaining compatibility with

32-bit schemes.

 Synchronous bus architecture.

 Multiplexed data/address lines.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 567

• AMBA (by ARM) is a multi-level (parallel) bus, mainly used for system-on-

chip (SoC) designs.

• Provides two buses connected through a bridge:

 A high-speed system bus (AHB) to connect processors, high-

performance peripherals, DMA controller and on-chip memories.

 A low-speed peripheral bus (APB) that follows a simpler protocol to

connect timers, general-purpose (non-critical) peripherals, and serial

interfaces.

Embedded Systems

Department of Computer & Communication Engineering L. Bisdounis 568

• Communication of processors with memories and other peripherals in an

embedded system is an important design task.

• A system bus may support the following types of data transfers: memory

to/from processor, I/O to/from processor, and I/O to/from memory (DMA).

• A system bus includes data, address and control lines.

• There are three basic communication control methods: strobe, handshake

and compromise.

• Apart from communication of a processor with its peripherals through a

system bus, there can be also communication through ports (port-based

or parallel communication).

• Main issues regarding the communication through a system bus are:

the addressing procedure, the interrupt-driven communication, the direct

memory access (DMA) and the arbitration method.

• Advanced communication schemes include: parallel and serial

communication architectures as well as multi-level bus architectures.

