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Abstract
We present the design exploration of a System-on-Chip
architecture dedicated to the implementation of the
HIPERLAN/2 communication protocol. The task was
accomplished by means of an ad-hoc C++ simulation
environment, integrating power models for CPUs,
memories and buses used in the design and incorporating
software profiling capabilities. The architecture is based
on two ARM microprocessors, an AMBA bus and a local
bus, DMA unit and other peripherals. Software mapping
on the processor has been based on the power/
performance profiling results.

1. Introduction

Technology constraints (e.g. on chip power
distribution) and market requirements (e.g. consumer
products requiring low cost and low power dissipation),
are pushing the demand of low power system design tools.
For this reason, power optimization has been considered
one of the key features for EDA support. While requiring
some degree of accuracy, information on power
consumption must be available as early as possible in the
design cycle, possibly at the architectural level, in order to
reduce the risk of time consuming iterations between high
level and low level design phases.

These requirements are emphasized by the growing
number of applications migrating toward System-on-Chip
(SoC) architectures [1][2]. In these systems multiple
processing elements are commonly present, along with
multiple bus hierarchies, connected by bus bridges and
DMA units.

We have developed a methodology for the architectural
exploration of these systems, based on cycle accurate
functional simulation and power consumption simulation.

In this article we describe the simulation tool we have
developed in the context of the European IST-2000-30093
project “Energy-Aware SYstem-on-chip design of the
HIPERLAN/2 standard”.

The target of the EASY project is the design and
realization of a complete SoC for portable applications
that will implement all the functions of the HIPERLAN/2
wireless LAN standard (i.e. the baseband processing, the
low-level MAC layer, the DLC layer and the
communications with the host bus), as well as critical
functionality of the IEEE 802.11a standard.

We describe the architecture level exploration made
possible by the tool and we show how we were able to
produce indications at the hardware and the software level
to reach a higher level of power efficiency.

The backbone of our approach is a simulation tool with
functional and power analysis capabilities. With this tool,
we are able to obtain a very detailed estimate of the power
consumption of the whole system, further subdivided into
power consumption of each system component
individually and of each software function.

The base of the simulation environment is the
ARMulator instruction set simulator (ISS) which is part of
the ADS1.2 suite [3]. ARMulator simulates the instruction
sets and architecture of various ARM processors. None of
the modules incorporated in ARMulator, including the
ISS, models power consumption. In order to obtain energy
profiles of the code under analysis, we added executable
power models of the CPU, cache, memory and buses to
the respective modules.

2. The EASY SoC architecture

The methodology and tools for architecture exploration
have been primarily experimented on an industrial SoC
design within the EASY SoC project. The primary
objective of the EASY project is the design of a low-
power SoC that will handle the control functions and data
processing of the HIPERLAN/2 standard, from the lowest
level layers (MAC and baseband) to the highest (DLC), as
well as critical functionality of the lower MAC layer of
the IEEE 802.11a standard. From one side it will interface
directly to the analog IF and RF front-end; from the other
side it will integrate both a PCI interface for the
communication with the host processor, in the case of
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Mobile Terminal operation, and an Ethernet interface, in
the case of Access Point operation.

The preliminary architectural template of the EASY
SoC that was proposed (Fig. 1) is based on the analysis of
the HIPERLAN/2 protocol data processes. The main
processor (i.e. protocol processor) used in the EASY SoC
is an ARM7 processor with integrated Cache memory.
This core processor and other devices, including internal
SRAM, external memories' controller, DMA engine, PCI
and Ethernet interfaces are connected to an AMBA AHB
bus.
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Fig. 1: Architectural template of the EASY SoC

A low-level MAC and baseband processing unit, is
seen by the to the protocol processor as a multiple device
connected to the AMBA AHB bus through a bus bridge
(Fig. 1). It is based on a dedicated ARM7 core that is used
to support timing critical tasks and to control the baseband
modem. Included in the low-level MAC and baseband
processing system, a block called MAC Hardware
Accelerator contains modules that will implement critical
processes of the IEEE 802.11a standard directly in
hardware (i.e. encryption/decryption, fragmentation,
timing control, protocol medium access, CRC, etc.).

The space of the partitioning of the functionalities
between the three units is not completely free, but partly
restricted by preliminary assumptions. These have been
made especially on the functions of the MAC hardware
accelerator.

Fig. 2: High Level HIPERLAN/2 model

Partner INTRACOM has developed an executable
HIPERLAN/2 C++ specification that implements the
functionalities of a Mobile Terminal and of an Access
Point [4]. Along with those items, a testbench (tester) has
been included, which is used for the validation of the
HIPERLAN/2 code functionalities. The tester creates one

AP instance and one MT instance and lets them exchange
Ethernet packets. The code (without considering the
testbench) has basically the same functionalities that will
be supported by the EASY SoC. As a consequence of the
architectural template of Fig. 1, the whole system's
functionalities should be partitioned between protocol
processor, modem control processor and MAC hardware
accelerator.

While Fig. 1 represents the actual SoC architecture, the
high-level software model of the overall system [4] can be
run on a single processor architecture. This is particularly
useful because we can extract information using a
software simulator, being still able to obtain significant
indications on software functions consumption of CPU
time and power. The criteria at the basis of partitioning
are essentially two:

First, real-time constraints. Some of the data processing
and control functions have to be performed with strict
time constraints (for example, respecting the 10 � s time
frame). These critical tasks can be relocated from the
protocol processor to the lower-level MAC processor.
Some of the task could be even implemented in hardware.
From a previous implementation of a hardware accelerator
for the IEEE 802.11a standard, some of these tasks are
already known to be too timing constrained to run on a
general purpose processor (for example encryption and
decryption, fragmentation, timing control, protocol
medium access and CRC).

Second, less severe but still important: power
consumption. The EASY SoC, especially when used in a
Mobile Terminal application, will be typically hosted in a
system where the total amount of energy is limited, for
example a notebook computer or a PDA. Once the most
timing critical functions have been planned to be
implemented in specialized hardware, the remaining
timing constraints could be guaranteed, theoretically,
raising CPU clock frequency and memory speed. But
blindly raising speed can lead to a significant waste of
energy consumption, compared to a more refined strategy,
based on the quest for a correct balance between CPU
clock frequency, cache and main memory size, specialized
hardware support.

3. Design analysis and exploration

environment

3.1. General structure and tools

The base of the simulation environment is the
ARMulator ISS which is part of the ADS1.2 suite.
ARMulator simulates the instruction sets and architecture
of various ARM processors.

                                                   313 



ARMulator consists of a series of modules,
implemented as Dynamic Link Libraries (.dll files) for
Windows. The main modules are:

• ARM processor core
• The memory used by the processor.

There are alternative predefined modules for each of
these parts. One of the predefined memory models,
mapfile, allows to specify a simulated memory system in
detail. It allows to specify narrow memories and wait
states.

In addition there are predefined modules which can be
used to:

• model additional hardware, such as a coprocessor or
peripherals

• extract debugging or benchmarking information (i.e.
Tracer and Profiler).

In addition to these models, taking into account the
presence of cache memory in many SoC architectures
(e.g. the EASY SoC), we have written a cache memory
model for the ARMulator.

The cache memory topologically resides between the
ARM core and the program. It is modeled as a set
associative memory. The number of sets, the width of the
associative part and the size of a single line can be
configured. Along with them access time for the first
access and for the subsequent sequential accesses (burst
accesses) can be specified.

Each simulated module consists of a functional model
and two views, a timing model and an energy model,
which are used to obtain results on execution time and
power consumption of the system.

By integrating all the aforementioned modules in the
ARMulator, the system architecture that has been built up
in the simulator is shown in Fig. 3.
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Fig. 3: Simulated system architecture

None of the modules incorporated in ARMulator,
including the ISS, models power consumption of the
relative component. In order to obtain energy profiles of
the code under analysis, power models of the CPU, cache,
memory and bus have been added to the respective
modules. In this section we will briefly describe their
implementation.

3.2. Power Models

CPU: The starting point of the model is inspired by a
methodology first proposed by Tiwary et al. [5][6].

These models are based on the association of a cost (in
term of energy consumption) to single instructions or
sequences of instructions. These data can be obtained
from lower level simulations (i.e. RTL) [7] or from
physical measurement of the current drawn by a testchip.
In our model we used physical measures using an
improvement of the Tiwari’s setup [8].

Memory: Cache and memory power models are the
same, cache energy consumption is treated the same way
as any other memory. Two energy consumption states are
defined for each type of memory: active and idle. Details
on the model of cache and memory can be found in [9].

The advantage of this model are the fact that it is
technology independent, that it does not perform low-level
time consuming simulations nor requires details about the
circuit characteristics.

Bus: The bus is modeled as a fixed capacitance per
line. For each cycle, the transitions on every line are
calculated and the bus energy dissipation per cycle is
obtained.

3.3. Profiling

Profiling enables us to find out where a program spent
execution time and energy as well as which functions
called other functions. This information can show which
sections of a program are being called more or less often.
Profiling is a well-known concept in software
development because it can be used to locate which parts
of a program are slower than expected, and might be
candidates for rewriting to make program execute faster.
In our case it has been used to locate parts of the code
which could be possible candidates for hardware
implementation of their function, in order to increment
computational speed and/or to reduce power consumption
of the whole system.

Time and power profiling in ARMulator has been
implemented by adding a new module, similar to the
profiler module already available. The profiler module is
activated at every executed instruction. It takes as inputs
the current instruction address and resolves the function
the instruction belongs to. During execution the program
call-graph is generated, where cycles (from the delay
models) and energy (from the power models) spent in
each function are annotated.

4. Optimizing the EASY SoC

4.1. Architectural exploration

Here we present the results obtained from the
architectural parameters exploration, and in particular on
the exploration of cache size. From Fig. 1 we see that the
architecture has an ARM 720T as protocol processor,
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which contains an 8kbyte unified cache. The cache
contains 512 lines of 16 byte (four words), arranged as a
4-way set-associative cache.

In this analysis we will set the cache size (namely, the
number of lines) as a variable parameter in the
architecture, and will explore caches of increasing size.

Cache access energy depends on its size, the values
have been derived from the CACTI 3.0 tool [10], they are
reported in Table 1 for a 0.18um technology.

Size access energy (nj)

1k 0,765

2k 0,781

4k 0,804

8k 0,869

16k 0,929

Table 1: Cache access energy

Fig. 4: Miss rate for increasing cache size

Fig. 4 reports the results obtained for miss rate using
caches of increasing size. The numbers indicate that the
real 8kbyte cache size guarantees an adequate low miss
rate, considering that the final application should be larger
and more complex (and therefore miss rate is supposed to

rise), but the software under test contains both the Access
Point and the Mobile Terminal functions, while in the real
application they will be split in two separate units.

Fig. 5: Energy spent after 50 packets exchange

Fig. 5 shows the energy spent by cpu, memory and
cache to send 50 packets. Cache energy increases
incrementing its size, while memory energy decreases,
because miss rate decreases. This trade-off brings to a
minimum in energy consumption. With the above
mentioned parameters for cache access energy, this
minimum is obtained for 8kbyte cache size.

4.2. Mapping

In this section we illustrate software functions
profiling, trying to select the functions that are critical
from the time or energy point of view.

Table 2 and 3 present a partial vision of the profiling
data, which in their integrity contain about 4000 functions.

The functions are sorted in decreasing order of time
and power consumption (self column), so they are the
most significant from the time/power consumption point
of view. Moreover, pruning has been accomplished to
leave out uninteresting data on library functions or
testbench functions.

Table 2: First most time-consuming functions (“self” column)

index cycles self children called name
4 15535545 9004746 6530799 188 <_ZN19MT_ECL_Sender_Actor9smart_dmaERjPhjjj>:
5 12235730 6955497 5280233 133 <_ZN19AP_ECL_Sender_Actor9smart_dmaERjPhjjj>:

18 1371658 1353810 17848 17 <_ZN11EC_Tx_unackC1ERK7DLCC_IDRK6MAC_IDRKhS7_>:
20 1287077 1179221 107856 26 <_ZN21AP_ECL_Receiver_Actor9smart_dmaERK6EC_dmaRj>:
24 1607147 1049756 557391 25 <_ZN21MT_ECL_Receiver_Actor9smart_dmaERK6EC_dmaRj>:
32 2305221 804927 1500294 106 <_ZN22AP_Frame_Decoder_Actor18transition3_decode>:
38 1438867 572759 866108 79 <_ZN22AP_Frame_Builder_Actor24choicePoint1_DmaListCopy>:
42 935026 538482 396544 810 <_ZN11EC_Rx_unack9Update_CLERj>:
51 2031375 393710 1637665 100 <_ZN22MT_Frame_Decoder_Actor18transition3_decode>:
52 1753062 393294 1359768 92 <_ZN22MT_Frame_Builder_Actor24choicePoint1_DmaListCopy>:
53 627544 391761 235783 568 <_ZN22MT_Frame_Builder_Actor9smart_dmaEPKhPhRKjS4_>:
56 2424221 343388 2080833 97 <_ZN18AP_Scheduler_Actor10create_FCHERKjRKfS3_S3_S3_>:
57 324245 324245 0 487 <_ZN22AP_Frame_Decoder_Actor9smart_dmaEPKhPhj>:
58 314498 314498 0 381 <_ZN22AP_Frame_Builder_Actor9smart_dmaEPKhPhRKjS4_>:
63 790784 260870 529914 59 <_ZN22MT_Frame_Builder_Actor17transition3_build>:
64 728245 258976 469269 321 <_ZN22MT_Frame_Decoder_Actor9smart_dmaEPKhPhj>:
67 1358439 232637 1125802 61 <_ZN16Connection_Table20update_traffic_tableEP13Traffic_TableRj>:
71 431864 198790 233074 692 <_ZN11EC_Rx_unack14Update_DecoderEj>:
74 1588821 195477 1393344 251 <_ZN11EC_Tx_unack9Update_CLEjR6EC_dma>:
78 189849 184302 5547 1081 < memcpy>:
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Table 3: First most energy-consuming functions (“self” column)

A discussion of significant functions that appear in
the tables follows. From Table 2 and 3 we see that there
is a correspondence between time consumption and
energy consumption (i.e. time consuming function are
also the most energy hungry). We will refer to the
functions using the index column of Table 1 and Table 2.
1. Memory transfer functions (index 4,5,20,24):

These functions perform a copy of Ethernet packets
from the source to the destination memory, using CPU
instructions. This function can be mapped as a DMA
transfer in the final architecture.
2. Memory transfer functions (index 53,57,58,64):

These are all memory transfer functions mapped on
the low level protocol processor (in the following
referred as ARM2) and the data transfer involve ARM2
and the modem buffer. A DMA transfer between this
units should lower the functions cost.
3. Packet decoding functions (index 32, 51)

These functions perform the low level packets
decoding before passing them to the DLC queues. These
functions are particularly processing intensive and must
obey to real-time constraints. They have been mapped
on ARM2 in the final architecture.
4. Frame builder functions (index 38, 52, 63)

The class Frame_Builder prepares the data for
transmission by the modem. It is mapped in ARM2 in
the final architecture. The DmaListCopy methods (index
38 and 52) control the DMA transfer of packets to the
modem and, in the current implementation, copy them
through software loops. Their impact is supposed to be
mitigated by the adoption of hardware DMA transfers.

The build method of the Frame_Builder_Actor class
(index 63) performs heavy processing in order to build
packets ready to be transferred to the modem. Due to the
heterogeneity of elaboration, no hardware solutions
seem to be practical. A solution to decrease the cost of

this function can be the use of focused manual or
automatic code optimization.
5. Connection table update functions (index 67)

This is another heavy computational function. The
traffic table is a list that contains the sizes of the DLC
queues. It is updated on a frame basis and is used by the
scheduler in order to create the map of the HIPERLAN/2
frame and divide the bandwidth among the connections.
Decreasing its cost through code optimization can be the
most practical solution for this function.

5. Discussion

We have shown how, from a large collection of
profiling data, we have pinpointed some hot functions in
the HIPERLAN/2 implementation. Following the same
procedure other functions can be individuated.

We can argue that a favorable implementation of
some functions in hardware is through the utilization of
programmable logic directly connected to the CPU bus.
Moreover since most of these functions operate on
global variables it is required that a dedicated unit
incorporates direct memory access functions and
therefore may be usefully integrated in the same FPGA
or ASIC in which the DMA controller softcore [11] is
implemented. Fig. 6 sketches the paths followed by most
DMA operations.

On the other hand, some functions have been
identified for which the most practical intervention is
software optimization.

index energy self children called name
4 2.56e-002 1.48e-002 1.08e-002 188 <_ZN19MT_ECL_Sender_Actor9smart_dmaERjPhjjj>:
5 2.02e-002 1.14e-002 8.79e-003 133 <_ZN19AP_ECL_Sender_Actor9smart_dmaERjPhjjj>:

18 2.15e-003 2.12e-003 2.90e-005 17 <_ZN11EC_Tx_unackC1ERK7DLCC_IDRK6MAC_IDRKhS7_>:
20 2.05e-003 1.88e-003 1.74e-004 26 <_ZN21AP_ECL_Receiver_Actor9smart_dmaERK6EC_dmaRj>:
24 2.61e-003 1.68e-003 9.30e-004 25 <_ZN21MT_ECL_Receiver_Actor9smart_dmaERK6EC_dmaRj>:
32 3.78e-003 1.34e-003 2.44e-003 106 <_ZN22AP_Frame_Decoder_Actor18transition3_decode>:
38 2.36e-003 9.20e-004 1.44e-003 79 <_ZN22AP_Frame_Builder_Actor24choicePoint1_DmaListCopy>:
42 1.54e-003 8.86e-004 6.54e-004 810 <_ZN11EC_Rx_unack9Update_CLERj>:
51 3.33e-003 6.53e-004 2.68e-003 100 <_ZN22MT_Frame_Decoder_Actor18transition3_decode>:
52 2.87e-003 6.40e-004 2.23e-003 92 <_ZN22MT_Frame_Builder_Actor24choicePoint1_DmaListCopy>:
53 1.03e-003 6.40e-004 3.87e-004 568 <_ZN22MT_Frame_Builder_Actor9smart_dmaEPKhPhRKjS4_>:
56 3.98e-003 5.71e-004 3.41e-003 97 <_ZN18AP_Scheduler_Actor10create_FCHERKjRKfS3_S3_S3_>:
57 5.23e-004 5.23e-004 0.00e+000 487 <_ZN22AP_Frame_Decoder_Actor9smart_dmaEPKhPhj>:
58 5.15e-004 5.15e-004 0.00e+000 381 <_ZN22AP_Frame_Builder_Actor9smart_dmaEPKhPhRKjS4_>:
63 1.29e-003 4.23e-004 8.69e-004 59 <_ZN22MT_Frame_Builder_Actor17transition3_build>:
64 1.19e-003 4.19e-004 7.70e-004 321 <_ZN22MT_Frame_Decoder_Actor9smart_dmaEPKhPhj>:
67 2.23e-003 3.82e-004 1.85e-003 61 <_ZN16Connection_Table20update_traffic_table>:
71 7.10e-004 3.25e-004 3.85e-004 692 <_ZN11EC_Rx_unack14Update_DecoderEj>:
74 2.63e-003 3.22e-004 2.31e-003 251 <_ZN11EC_Tx_unack9Update_CLEjR6EC_dma>:
78 3.29e-004 3.20e-004 8.95e-006 1081 < memcpy>:
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Fig. 6: Direct memory access most frequent paths

5.1. Expected impact of bus contention on
mapping

From our simulations the utilization of the local bus
accessed by the ARM cache controller is below 25%. In
Fig. 7 we report the total execution time (simulated
time) of the benchmark and the memory active time,
which corresponds to the time the bus is occupied.

These numbers take into account the bus traffic due
to DMA operation, emulated by software routines. In the
final EASY SoC architecture (Fig. 1) the bus is split into
an AMBA bus accessed by the protocol ARM processor
and a local bus by low level protocol processor. As a
result it is expected that in the final EASY SoC
architecture the bus contention does not represent either
a performance bottleneck or a source of energy
consuming waiting loops in the processors.

Fig. 7: Total execution time and memory active time

6. Conclusions

The design of the EASY System-on-Chip
architecture, starting from a fixed template, was refined
and partially modified on the basis of simulation results
obtained from a dedicated exploration tool. The
mapping of the software routines on the two available

processors, in particular, was strongly influenced by the
power and performance profiling results. Bus contention
was quantitatively analyzed resulting to be not a real
problem for the target application. The experimented
exploration environment developed for the presented
design can be extended and leveraged for other
multiprocessor SoC architectures.
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