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Abstract:  In this paper an accurate, analytical model for 
the evaluation of the CMOS inverter transient response and 
propagation delay for short-channel devices is presented. 
An exhaustive analysis of the inverter operation is provided 
which results to accurate expressions of the output response 
to an input ramp. These analytical expressions are valid for 
all the inverter operation regions and input waveform 
slopes and take into account the influences of the short-
circuit current during switching, and the gate-to-drain 
coupling capacitance. The � -power law MOS model which 
considers the carriers velocity saturation effects of short-
channel devices, is used. The final results are in excellent 
agreement with SPICE simulations. 
 

I . INTRODUCTION 

 Since, propagation delay is one of the most critical 
performance parameters in CMOS digital circuits, much 
effort has to be devoted for the extraction of accurate, 
analytical expressions for timing models of basic circuits. 
Using transistor level simulators with continuous-time 
modeling of the devices, like SPICE, can be very expensive 
in terms of storage and computation time. Hence, much of 
past research has addressed the development of analytical 
delay models, without the necessity of expensive numerical 
iterations.  
 The main goal of this work is the analytical evaluation 
of the propagation delay in a CMOS inverter. To achieve 
this, analytical expressions of the output waveform must be 
derived, directly from the differential equation describing 
the temporal evolution of the inverter output. It is important 
to model accurately the inverter operation, since several 
fast methods for reducing a CMOS gate to an equivalent 
inverter have been proposed [1]. 
 Analytical expressions for the output waveform and the 
propagation delay, including the effect of the input 
waveform slope, was presented in [2] and [3], where the 
influence of the short-circuit current was neglected. These 
works are based on the Shichman-Hodges square-law MOS 
model [4] that ignores the carriers velocity saturation effect, 
which becomes prominent in short-channel devices. In [5], 
the differential equation describing the discharge of the 
load capacitor was solved for a rising input ramp 
considering the current through both transistors and the 
gate-to-drain capacitance. However, fitting methods are 
used, resulting in a semi-empirical model, which is still 
based on the square-law model. 

 Nabavi-Lishi and Rumin [6] presented a method for the 
calculation of the inverter delay, where a linear 
approximation of the output waveform based on empirical 
factors produced from SPICE simulations, is used. 
Moreover, an approximated version of the SPICE level-3 
MOS model is used, where the reduction of the transistors 
saturation voltage due to the velocity saturation effect, is 
neglected.  
 Sakurai and Newton [7],[8] presented closed-form delay 
expressions for the CMOS inverter, based on the � -power 
(n-power in [8]) law MOS model which includes the 
carriers velocity saturation effect of short-channel devices. 
For the derivation of the output expression in [7] the short-
circuit current is neglected and the delay expression is valid 
only for fast input ramps, while in [8] a fictitious input 
ramp is used which is clamped to ground for ramp voltages 
less than the switching voltage in order to approximate the 
CMOS inverter by a NMOS circuit. Also, in [7] and [8], the 
influence of the gate-to-drain coupling capacitance, is 
neglected. An extension in the delay expression of [7] for 
the case of very lightly loaded inverter and/or slow input 
signals is presented in [9] where a table of coefficients 
produced from SPICE simulations is used, but still for 
negligible short-circuit current. The delay model presented 
in [10] uses the � -power MOS model taking into account 
the short-circuit current of the CMOS inverter, through a 
two-step iterative approach. In this approach the output 
voltage and the currents through both transistors are 
assumed to be piece-wise linear. However, modeling the 
nonlinear behavior of the transistors using linear 
approximations contributes to inaccuracies.  
 In this paper, analytical expressions for the CMOS 
inverter output response to an input voltage ramp are 
derived which overcome the weaknesses of previous works. 
Based on these expressions, accurate analytical formulae 
for the evaluation of the propagation delay for all the cases 
of input ramps, are produced. The derived timing model 
takes into account the influences of the current through both 
transistors and the gate-to-drain coupling capacitance, 
without using empirical approaches based on simulation 
results or numerical methods. The presented model clearly 
shows the influence of the inverter design characteristics, 
the load capacitance, and the slope of the input waveform 
driving the inverter on the propagation delay. The á-power 
law MOS model [7] which includes the carriers velocity 
saturation effect of short-channel devices, is used. 
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Fig.1: The CMOS Inverter 

I I . INVERTER TRANSIENT RESPONSE ANALYSIS 

 The derivations presented in the following are for a 
rising input ramp 
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where �  is the input rise time. The analysis for a falling 
input ramp is symmetrical, and similar results can be 
obtained by appropriate substitutions in the derived 
equations. The differential equation which describes the 
discharge of the load capacitance CL for the CMOS inverter 
(Fig.1), taking into account the current through the gate-to-
drain coupling capacitance (CM), is derived from the 
application of the Kirchoff’s current law to the output node 
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 The equivalent gate-drain capacitance CM is the sum of 
the gate-to-drain capacitances of both transistors. The gate-
to-drain capacitance of a transistor is the sum of the gate-to-
drain overlap capacitance and a part of the gate-to-channel 
capacitance. The overlap part is voltage independent, and is 
given by: Cgd = W�Cgdo, where W is the effective width of 
the transistor and Cgdo is the gate-drain overlap capacitance 
per unit channel width which is determined by the process 
technology. In the cutoff region of the transistor there is no 
conducting channel and in the saturation region the channel 
does not extend to the drain. Therefore, the gate-to-drain 
capacitance due to the channel charge is equal to zero. In 
the linear region the distributed gate-to-channel capacitance 
may be viewed as being shared equally between the source 
and the drain. In this case: Cgd-channel = 0.5�Cox�W�L, where 
Cox is the gate-oxide capacitance per unit area and L is the 
effective length of the transistor. 
 For the expressions of the transistor currents the four-
parameter � -power law MOS model is used. The 
parameters are the velocity saturation index (� ), the drain 
current (ID0) at VGS = VDS = VDD, the drain saturation 
voltage (VD0) at VGS = VDD and the threshold voltage (VTH). 
After normalizing voltages with respect to VDD, i.e. 
uin=V in/VDD, uout = Vout/VDD, n=VTHn/VDD, p =�VTHp	/VDD, 

udon =VD0n /VDD, udop =VD0p /VDD  and  using  the  variable  x 
(x = t / � ), the NMOS and PMOS device currents [7] of the 
CMOS inverter are given by the following equations: 
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 Since the input ramp will reach its final value with the 
NMOS device either in saturation or in the linear region 
two main cases of input ramps must be considered, in order 
to give a complete analysis of the output waveform. For fast 
input ramps, the NMOS device is still saturated while for 
slow input ramps the NMOS is in its linear region, when the 
input voltage ramp reaches its final value. The operation 
regions of the inverter are shown in Fig.2. The separation 
of the operating area in regions corresponds to the different 
combinations of the operation modes of the NMOS and 
PMOS devices (i.e. linear, saturation, cutoff). 

Case A - Fast input ramps: 

Region 1,  0 ���� x ���� n : The NMOS transistor is off, and the 
PMOS transistor is in the linear region. Part of the charge 
from the input which injected through the coupling 
capacitance causes an overshoot at the early part of the 
output voltage waveform (Fig.2). During the  overshoot  the 

 
Fig.2: Operation regions of the inverter 
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PMOS device operates in a reversed linear mode because 
the output voltage is greater than the supply voltage. Since, 
in this region the differential equation (2) cannot be solved 
analytically, an average value of x (xav = n /2) is used in the 
expression of the PMOS current, resulting in the following 
solution 
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Region 2,   n ����  x ����  xsatp : 
The NMOS transistor is saturated and the PMOS transistor 
is still in the linear region. xsatp is the normalized time when 
the PMOS device enters saturation. In order to give a 
solution in the differential equation describing the 
discharge of the output load in this region an approximation 
for the PMOS current, is used (Fig.3). If we assume that the 
minimum of the PMOS current appears when the input 
voltage arrives at the NMOS threshold voltage (x = n), then 
we can approximate the PMOS current by a linear function 
of the normalized time 

 � �I I S x np pmin� �  , (6) 

where Ipmin is calculated using the PMOS current equation 
in the linear region and the value of the normalized output 
voltage at x = n in equation (5), and S is the PMOS current 
slope. S is calculated by equating the exact PMOS current 
in the linear region as given from the á-power law MOS 
model in equation (4) with the approximated PMOS current 
in equation (6), at the point x pc � ( ) /1 2  which is close 

to the middle of region 2 (see Fig.3). After the above 
approximation the solution of the equation (2) becomes 
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The above equation gives waveforms very close to those 
derived from SPICE simulations (as shown in section IV), 
which  indicates  the validation of  the PMOS current linear 

 
Fig.3: Approximation of the PMOS current in region 2 

approximation. In order to continue the analysis for the next 
region, the evaluation of the normalized time value xsatp and 
the normalized output voltage value usatp when the PMOS 
device saturates, is required. These values satisfy the 
PMOS saturation condition: u uout dop�  �1 . In order to 
solve this equation a Taylor series expansion around the 
point x p n�  1  up to the second order coefficient is used, 
for both uout and �udop . After that, the PMOS saturation 
condition becomes 

 z z x z x m m x m x0 1 2
2

0 1 2
2� � � � � , (8) 

where z’s  and m’s are the Taylor series coefficients of uout  
and �udop  respectively. Standard ways of finding those 
coefficients can be found in most mathematical handbooks. 
The only root of the quadratic equation (8) which belongs 
in the interval � �n p, 1 , is xsatp. The error which is inserted 
in the evaluation of xsatp due to the above method in most 
cases is up to 0.3%. By substituting xsatp in equation (7) the 
normalized output voltage usatp is evaluated. 
 As we can see in Fig.2, in the special case of very fast 
input ramps, the PMOS device is turned off after its linear 
region without enters saturation. This occurs because the 
output voltage overshoot finishes when the PMOS is 
already off. Hence, the inverter does not enter in region 3 
and the calculation of xsatp and usatp is not required.  

Region 3,   xsatp ����  x ���� 1-p : 
Both transistors are saturated. The analytical solution of the 
differential equation (2) becomes 
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The integration constant u23 is inserted to ensure continuity 
with respect to region 2, and is given by 
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Region 4,   1-p ����  x ����  1 : 
The NMOS transistor is saturated and the PMOS transistor 
is off. The analytical solution of the equation (2) is 
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Region 5A,   1 ����  x ����  xsatn : 
The input ramp has reached its final value with the NMOS 
transistor still in saturation and the PMOS transistor off. 
xsatn is the normalized time value when the NMOS 
transistor leaves saturation i.e. u uout don� �  (see equation 
(3)). The analytical solution of the differential equation (2) 
in this region is 
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Region 6,   x ����  xsatn : 
The NMOS device enters in its linear region, and the 
PMOS is off. The analytical solution of the equation (2) is 

 � � � �u uout don
A n n x xsatne�   ln

/1 2�
, (12) 

where 
� �

A
k

V C Cln
ln

DD L M

�
�
� . 

xsatn is calculated from equation (11) for uout = udon. 

Case B - Slow input ramps: 
In the second case, slow input ramps such that the NMOS 
device leaves saturation while the input voltage is still a 
ramp, are studied. This occurs if the value of the 
normalized output voltage when the input ramp reaches its 
final value is lower than udon (Fig.2). The output 
expressions for the regions 1, 2, 3 and 4 are the same with 
those of the previous case. As we can see in Fig.2, the 
normalized time value xsatn must be calculated from 
equation (10) for u uout don� � , which corresponds to the 
NMOS saturation condition (see equation (3)). In the case 
of slower input ramps the inverter doesn’ t enter in region 4. 
This occurs when the PMOS transistor is turned off and the 
NMOS transistor is already in the linear region 
� �x psatn � 1 . In this case xsatn is calculated from equation 
(9) for u uout don� � . In order to solve those two equations a 
Taylor series expansion around the point x p� 1  up to the 
second order coefficient is used for �udon , and two more 
around the point x p n�  1  for the output expressions (9) 
and (10). Hence, the normalized time value xsatn becomes 
the root of a simple quadratic equation. The error which is 
inserted in the evaluation of xsatn due to the above method 
in both cases is up to 0.3%. 

Region 5B,   xsatn ����  x ���� 1 : 
The NMOS transistor is in the linear region and the PMOS 
transistor is either off or so poorly conducting that its 
influence can be neglected. SPICE simulations indicate that 
the PMOS device current in this region (for x < 1p) is up 
to 2-3% of the NMOS device current. Neglecting the 
charging current through the gate-to-drain coupling 
capacitance an approximated solution of the equation (2) is 
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where � �u u x n nsatn don satn
n�  ( ) ( ) /1 2�  is the value of 

the normalized output voltage when the NMOS transistor 
leaves saturation. 

Region 6,  x ���� 1: 
The input ramp has reached its final value, the NMOS 
device is still in the linear region and the PMOS device is 
off. The analytical solution of (2) becomes 
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where u[1] is the value of the normalized output voltage 
when the input ramp reaches its final value and is 
calculated if we set x=1 in equation (13). 
 

I I I . PROPAGATION DELAY EVALUATION 

 The fall propagation delay at the 50% voltage level is 
written as 
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where x0.5 is the normalized time value when uout = 0.5. 
Thus, for the evaluation of the propagation delay, the 
normalized time value x0.5 must be determined for both 
cases of input ramps.  
 In the case of fast input ramps the output voltage 
reaches the 50% level when the inverter operates in region 
5A if u[1] � 0.5 and in region 4 if u[1] � 0.5. u[1] is the value 
of the normalized output voltage when the input ramp 
reaches its final value and is calculated from equation (10) 
for x = 1. When uout = 0.5 occurs in region 5A, x0.5 is 
calculated from equation (11) 
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In the case where uout = 0.5 occurs in region 4, x0.5 should 
be calculated from equation (10). In order to solve this 
equation the Taylor series expansion of the output 
expression (10), which was used for the calculation of xsatn, 
is used resulting to the following simple solution  
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where y0, y1, y2 are the coefficients in the Taylor series 
expansion. 
 For slow input ramps the condition uout = 0.5 occurs in 
region 4 if u[1-p] � 0.5 and in region 3 if u[1-p] � 0.5. u[1-p] is 
the value of the normalized output voltage when the PMOS 
device enters the cutoff region, and is calculated from 
equation (9) for x = 1p. In the first case the normalized 
time value x0.5 is given by equation (17), and in the second 
one is calculated using the Taylor series expansion of the 
output expression (9) 
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where w0, w1, w2 are the coefficients in the Taylor series 
expansion. The error which is inserted in the calculation of 
x05 in regions 3 and 4 due to the use of the Taylor series 
expansions is up to 0.2%. 
 

IV. RESULTS AND CONCLUSIONS 

 Figure 4 show some typical output waveforms produced 
from the expressions of section II. A 1.2� m CMOS process 
technology has been used to validate the accuracy of the 
presented inverter output waveform expressions. The model 
parameters and the dimensions of both transistors are listed 
in Table 1. The transistor widths have been selected in 
order to achieve equal drain currents (ID0) at VGS=VDS=VDD 
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Table 1: MOSFET parameters used in calculations 

Parameter NMOS PMOS 
L (� m) 1.2 1.2 
W (� m) 5 11.75 
ID0 (mA) 1.53 1.53 

�  1.43 1.54 
�VD0� (Volts) 1.70 2.50 
�VTH� (Volts) 0.736 0.751 
Cox (fF/� m2) 1.45 1.45 
Cgdo (fF/� m) 0.30 0.30 

 

 
Fig.4: Inverter output waveforms 

The output waveforms produced by SPICE simulations are 
added for comparison. A supply voltage of 5Volts and an 
output load of 0.2pF, have been used. It can be observed, 
that the analytical waveforms are very close to those 
produced by SPICE simulations. The output waveforms for 
input rise times 0.5ns and 1ns correspond to case A of the 
previous section analysis, while those for input rise times 
2ns and 4ns correspond to case B.  
 In Figure 5 the inverter propagation delay for a rising 
input ramp, is plotted as a function of the input rise time. 
Results using the approaches for the evaluation of the 
propagation delay presented in [2], [6], [7] and [10], are 
also given. It can be observed, that the presented model 
gives results closer to those derived from SPICE 
simulations than the other methods. The error is less than 
3%. This occurs because the proposed model includes the 
influences of the short-circuit current and the gate-to-drain 
coupling capacitance on the expressions of the inverter 
output waveform. The presented timing model can be used 
for more complex static gates, since several fast methods 
[1] have been proposed for reducing a CMOS gate to an 
equivalent inverter. The most critical issue in gate modeling 
is the reduction of the arrays of serial and parallel 
transistors to single transistors with equivalent drivabilities. 
Using these called “collapsing”  techniques the propagation 
delay of a gate can be computed quickly and accurately 
using the inverter timing model and without the 
complications associated with trying to generalize the 
inverter model to complex gates. The development of an 
accurate  timing  model  for the basic CMOS gate (inverter)  

 
Fig.5: Inverter propagation delay 

is of great importance in order to avoid accumulated errors 
in the procedure of the delay evaluation of static CMOS 
gates.  
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