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Foreword

This book is the fourth in a series on novel low power design architectures,
methods and design practices. It results from of a large European project started
in 1997, whose goal is to promote the further development and the faster and
wider industrial use of advanced design methods for reducing the power con-
sumption of electronic systems.

Low power design became crucial with the wide spread of portable infor-
mation and communication terminals, where a small battery has to last for a
long period. High performance electronics, in addition, suffers from a per-
manent increase of the dissipated power per square millimeter of silicon, due
to the increasing clock-rates, which causes cooling and reliability problems or
otherwise limits the performance.

The European Union’s Information Technologies Programme ’Esprit’ did
therefore launch a ’Pilot action for Low Power Design’, which eventually grew
to 19 R&D projects and one coordination project, with an overall budget of 14
million EURO. It is meanwhile known as European Low Power Initiative for
Electronic System Design (ESD-LPD) and will be completed in the year 2002.
It involves to develop or demonstrate new design methods for power reduction,
while the coordination project takes care that the methods, experiences and
results are properly documented and publicised.

The initiative addresses low power design at various levels. This includes
system and algorithmic level, instruction set processor level, custom processor
level, RT-level, gate level, circuit leveland layout level. It coversdatadominated
and control dominated as well as asynchronous architectures. 10 projects deal
mainly with digital, 7 with analog and mixed-signal, and 2 with software related
aspects. The principalapplicationareas are communication, medicalequipment
and e-commerce devices.
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The following list describes the objectives of the 20 projects. It is sorted by
decreasing funding budget.

CRAFT CMOS Radio Frequency Circuit Design for Wireless Application

Advanced CMOS RF circuit design including blocks such as LNA,
down converter mixers & phase shifters, oscillator and frequency
synthesiser, integrated filters delta sigma conversion, power ampli-
fier

Development of novel models for active and passive devices as well
as fine-tuning and validation based on first silicon fabricates

Analysis and specification of sophisticated architectures to meet in
particular low power single chip implementation

PAPRICA Power and Part Count Reduction Innovative Communication Ar-
chitecture

Feasibility assessment of DQIF, through physical design and char-
acterisation of the core blocks

Low-power RF design techniques in standard CMOS digital process

RF design tools and framework; PAPRICA Design Kit.

Demonstration of a practical implementation of a specific applica-
tion

MELOPAS Methodology for Low Power Asic design

To develop a methodology to evaluate the power consumption of a
complex ASIC early on in the design flow

To develop a hardware/software co-simulation tool

To quickly achieve a drastic reduction on the power consumption
of electronic equipment

TARDIS Technical Coordination and Dissemination

To organise the communication between design experiments and to
exploit their potential synergy

To guide the capturing of methods and experiences gained in the
design experiments

To organise and promote the wider dissemination and use of the
gathered design know-how and experience



xxvii

LUCS Low Power Ultrasound Chip Set.

Design methodology on low power ADC, memory and circuit de-
sign

Prototype demonstration of a handheld medical ultrasound scanner

ALPINS Analog Low Power Design for Communications Systems

Low-voltage voice band smoothing filters and analog-to-digital and
digital-to-analog converters for an analog front-end circuit of a
DECT system

High linear transconductor-capacitor (gm-C) filter for GSM Analog
Interface Circuit operating at supply voltages as low as 2.5V

Formal verification tools, which will be implemented in the indus-
trial partners design environment. These tools support the complete
design process from system level down to transistor level

SALOMON System-level analog-digital trade-off analysis for low power

A general top-down design flow for mixed-signal telecom ASICs

High-levelmodelsofanaloganddigital blocks and power estimators
for these blocks

A prototype implementation of the design flow with particular soft-
ware tools to demonstrate the general design flow

DESCALE Design Experiment on a Smart Card Application for Low Energy

The application of highly innovative handshake technology

Aiming at some 3 to 5 times less power and some 10 times smaller
peak currents compared to synchronously operated solutions

SUPREGE A low power SUPerREGEnerative transceiver for wireless data
transmission at short distances

Design trade-offs and optimisation of the micro power receiver /
transmitteras a functionof various parameters (power consumption,
area, bandwidth, sensitivity, etc)

Modulation / demodulation and interface with data transmission
systems

Realisation of the integrated micro power receiver / transmitter
based on the super-regeneration principle
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PREST Power REduction for System Technologies

Survey of contemporary Low Power Design techniques and com-
mercial power analysis software tools

Investigation of architectural and algorithmic design techniques
with a power consumption comparison

Investigation of Asynchronous design techniques and Arithmetic
styles

Set-up and assessment of a low power design flow

Fabrication and characterisation of a Viterbi demonstrator to assess
the most promising power reduction techniques

DABLP Low Power Exploration for Mapping DAB Applications to Multi-
Processors

A DAB channel decoder architecture with reduced power consump-
tion

Refined and extended ATOMIUM methodology and supporting
tools

COSAFE Low Power Hardware-Software Co-Design for Safety-Critical Ap-
plications

The development of strategies for power efficient assignment of
safety critical mechanisms to hardware or software

The designand implementationof a low-power, safety-criticalASIP,
which realises the control unit of a portable infusion, pump system

AMIED Asynchronous Low-Power Methodology and Implementation of an
Encryption/Decryption System

Implementation of the IDEA encryption/decryption method with
drastically reduced power consumption

Advanced low power design flow with emphasis on algorithm and
architecture optimisations

Industrial demonstration of the asynchronous design methodology
based on commercial tools
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LPGD A Low-Power Design Methodology/Flow and its Application to the
Implementation of a DCS1800-GSM/DECT Modulator/Demodulator

To complete the development of a top-down, low power design
methodology/flow for DSP applications

To demonstrate the methods at the example of an integrated
GFSK/GMSK Modulator-Demodulator (MODEM)
for DCS1800-GSM/DECT applications

SOFLOPO Low Power Software Development for Embedded Applications

Develop techniquesand guidelines for mapping a specific algorithm
code onto appropriate instruction subsets

Integrate these techniques into software for the power-conscious
ARM-RISC and DSP code optimisation

I-MODE Low Power RF to Base band Interface for Multi-Mode Portable
Phone

To raise the level of integration in a DECT/DCS1800 transceiver, by
implementing the necessary analog base band low-pass filters and
data converters in CMOS technology using low power techniques

COOL-LOGOS Power Reduction through the Use of Local don’t Care Con-
ditions and Global Gate Resizing Techniques: An Experimental Evalua-
tion.

To apply the developed low power design techniques to the existing
24-bit DSP, which is already fabricated

To assess the merit of the new techniques using experimental silicon
through comparisons of the projected power reduction (in simula-
tion) and actually measured reduction of new DSP; assessment of
the commercial impact

LOVO Low Output VOltage DC/DC converters for low power applications

Development of technical solutions for the power supplies of ad-
vanced low power systems, comprising the following topics

New methods for synchronousrectification for very low output volt-
age power converters
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PCBIT Low Power ISDN Interface for Portable PC’s

Design of a PC-Card board that implements the PCBIT interface

Integrate levels 1 and 2 of the communication protocol in a single
ASIC

Incorporate power management techniques in the ASIC design:

– system level: shutdown of idle modules in the circuit
– gate level: precomputation, gated-clock FSMs

COLOPODS Design of a Cochlear Hearing Aid Low-Power DSP System

Selectionof a future oriented low-power technology enabling future
power reduction through integration of analog modules

Design of a speech processor IC yielding a power reduction of 90%
compared to the 3.3 Volt implementation
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The low power design projects have achieved the following results:

Projects, who have designed a prototype chip, can demonstrate a power
reduction of 10 to 30 percent.

New low power design libraries have been developed.

New proven low power RF architectures are now available.

New smaller and lighter mobile equipment is developed.

Instead of running a number of Esprit projects at the same time indepen-
dently of each other, during this pilot action the projects have collaborated
strongly. This is achieved mostly by the novelty of this action, which is the
presence and role of the coordinator: DIMES - the Delft Institute of Mi-
croelectronics and Submicron-technology, located in Delft, the Netherlands
(http://www.dimes.tudelft.nl). The task of the coordinator is to co-ordinate,
facilitate, and organize:

The information exchange between projects.

The systematic documentation of methods and experiences.

The publication and the wider dissemination to the public.

The most important achievements, credited to the presence of the coordinator
are:

New personnel contacts have been made, and as a consequence the result-
ing synergy between partners resulted in better and faster developments.

The organization of low power design workshops, special sessions at
conferences, and a low power design web site,
http://www.esdlpd.dimes.tudelft.nl. At this site all public reports of the
projects can be found and all kind of information about the initiative
itself.

The used design methodology, design methods and/or design experience
are disclosed, are well documented and available.

Based on the work of the projects, in cooperation with the projects, the
publication of a low power design book series is planned. Written by
members of the projects this series of books on low power design will
disseminate novel design methodologies and design experiences, which
were obtained during the runtime of the European Low Power Initiative
for Electronic System Design, to the general public.
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In conclusion, the major contribution of this project cluster is that, except the
alreadymentioned technical achievements, the introductionof novel knowledge
on low power design methods into the mainstream development processes is
accelerated.

We would like to thank all project partners from all the different companies
and organizations who make the Low Power Initiative a success.

Rene van Leuken, Reinder Nouta, Alexander de Graaf, Delft, May 2002



Introduction

Modern electronic systems have reached a significant turning point in the last
decade, from low performance products such as wristwatches and calculators
to high performance products such as laptops and personal digital assistants.
The introduction of these devices to the consumer market raised to the surface
a characteristic that had been previously omitted. This was low power dissipa-
tion. Gradually, engineers invented novel techniques, which may be included
in efficient design methodologies, for designing and implementing efficient cir-
cuits not only in terms of area and performance, as they were used to, but in the
term of low power consumption.

The material in this book is based on the background and the innovative re-
sultsof thedifferent partners involved in the AMIED, LPGD, PREST, COSAFE,
and LUCS projects of the European Low Power Initiative for Electronic Sys-
tem Design under the successful coordination of DIMES, Delft. The partners
have been studying for many years low-power design field introducing novel
concepts and efficient techniques. Due to close collaboration of academic and
industrial research groups the presented material have been influenced by the
plethora of disseminations e.g. public deliverables, technical meetings, work-
shops, during the projects execution.

The book consists of two parts: The first part includes the low power de-
sign techniques for power optimization and estimation, while the second one
provides the results from the projects COSAFE and LUCS. Starting from the
description of the power consumption sources, low power optimization and es-
timation techniques for logic design level, circuit/transistor design level, and
layout design level are provided in eight chapters (i.e. Chapters 2-9). The
next two chapters describe the novel low power techniques, which were used
during the implementation of the safety-critical Application Specific Instruc-
tion Processor designed in COSAFE project, and the implementation of the
low power 16-channel ultrasound beamformer application specific integrated
circuit (ASIC) designed for LUCS project.
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A top-down approach with respect to the design level is adopted in the pre-
sentation of the low power design techniques . However,it was not possible to
present in detail manner all the low power optimization and estimation tech-
niques from the logic level to the layout level. Only the most important research
contributions presented in a tutorial manner, are included. The book can also
be used as a textbook for undergraduate and graduate students, VLSI design
engineers,and professionals, who have had a basic knowledge of VLSI digital
design.

The authors of the chapters of this book together with the editors would
like to use this opportunity to thank the many people, i.e. colleagues and Ph.D.
students, whose dedicationand industry during the projects execution lead to the
introduction of novel scientific results and realization of innovative integrated
systems.

The authors of Chapter 3 and 9 would like to thank Dr. S. Theoharis for his
contribution in the software development of logic optimization and estimation
tools, which were necessary for making power measurements.

The authors of Chapter 6 wish to acknowledge the discussions with Dr.
Karagianni, who significantly influenced the particular chapter. Also the au-
thors appreciate the financial support from the "C. Caratheodory’s" fund for the
University of Patras.

The authors of Chapter 10 would like to thank V. Spiliotopoulos for his
support in the designing and realization of the COSAFE ASIP. Also, many
thanks to V. Kokkinos for his contribution in the implementation of the many
fault-secure multiplier designs.

All authors of this book together with the editors would like to thank DIMES,
Delft, for their continuous support during the running of the low power projects
for the dissemination of the scientific results. This book is one of the activities
of this dissemination task.

The authors of Chapter 4 would like to thank the people, who contributed
to PREST, whose public deliverable reports used as an inspiration source for
chapter’s preparation.

Last but not least, D. Soudris would like to thank his parents for being a
constant source of moral support and for firmly imbibing into him from a very
young age thatperseverantia omnia vincit- it is this perseverance that kept him
going. This book is dedicated to them.

Dimitrios Soudris, Christian Piguet, Costas Goutis, May 2002
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CIRCUIT TECHNIQ UES FOR
REDUCING POWER CONSUMPTION
IN ADDERS AND MULTIPLIERS

LabrosBisdounis

INTRACOMS.A.,Athens,Greece

lmpi@intracom.gr

Dimitrios Gouvetas

OdysseasKoufopavlou

University of Patras,Rio,Greece

odysseas@ee.upatras.gr

Abstract An importantissuein thedesignof VLSI Circuitsis thechoiceof thebasiccircuit
approachandtopologyfor implementingvariouslogic andarithmeticfunctions
suchasaddersandmultipliers. In thischapter, severalstaticanddynamicCMOS
circuit designstylesareevaluatedin termsof area,propagationdelayandpower
dissipation. The differentdesignstylesarecomparedby performingdetailed
transistor-level simulationson a benchmarkcircuit (ripple carry adder)using
HSPICE,andanalyzingthe resultsin a statisticalway. After the comparison
betweenthe different designstyles,a numberof well known typesof adders
(ripplecarry, carryskip,carrylookahead,carryselectetc.) arecomparedin terms
of propagationdelay, numberof gatesand logic transition’s averagenumber.
Furthermore,powermeasurementsandcomparisonsfor anumberof well-known
multipliersareprovided. Basedon theresultsof theprovidedanalysissomeof
the tradeoffs that arepossibleduring the designphasein orderto improve the
circuit power-delayproductareidentified.

Keywords: circuit designtechniques,circuit macroblocks,adders,circuit styles
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5.1 Intr oduction

Muchof theresearcheffortsof thepastyearsin theareaof digitalelectronics
hasbeendirectedtowardsincreasingthe speedof digital systems.Recently,
the requirementof portability andthe moderateimprovementin batteryper-
formanceindicatethat thepower dissipationis oneof themostcritical design
parameters[1]. The threemostwidely acceptedmetricsto measurethequal-
ity of a circuit or to comparevariouscircuit stylesarearea,delayandpower
dissipation.Portability imposesa strict limitation on power dissipationwhile
still demandshigh computationalspeeds.Hence,in recentVLSI systemsthe
power-delayproductbecomesthemostessentialmetricof performance.

The reductionof the power dissipationandthe improvementof the speed
requireoptimizationsat all levels of the designprocedure. In this chapter,
the propercircuit style andmethodologyis considered.Since,most digital
circuitry is composedof simpleand/orcomplex gates,we studythebestway
to implementaddersin orderto achieve low powerdissipationandhighspeed.
Severalcircuit designtechniquesarecomparedin orderto find theirefficiency
in termsof speedand power dissipation. A review of the existing CMOS
circuit designstylesis given,describingtheiradvantagesandtheir limitations.
Furthermore,a four-bit ripple carryadderfor useasa benchmarkcircuit was
designedin a full-custom mannerby using the different designstyles,and
detailedtransistor-level simulationsusingHSPICE[2] wereperformed.Also,
variousdesignsand implementationsof four multipliers areanalysedin the
termsof delayandpowerconsumption.Two waysof powermeasurementsare
used.

ConventionalstaticCMOShasbeenatechniqueof choicein mostprocessor
design.Alternatively, staticpasstransistorcircuitshavealsobeensuggestedfor
low-powerapplications[3]. Dynamiccircuits,whenclockedcarefully, canalso
beusedin low-power, high speedsystems[4]. However, severalotherdesign
techniquesneedto beappliedandevaluatedalongwith thesecircuit stylesin
orderto improve thespeedandreducethepowerdissipationof VLSI systems.
In thischapterwestudyeightdifferentCMOSlogic styles:

ConventionalStaticCMOS- CSL,

ComplementaryPass-transistor- CPL [5],

DoublePass-transistor- DPL [6],

StaticandDynamicDifferentialCascodeVoltageSwitch- DCVSL[7,8],

StaticDifferentialSplit-level - SDSL[9],

Dual-RailDomino- DRDL [10,11],and

Enable/disabledCMOSDifferential- ECDL [12].
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The restof thechapteris structuredasfollows. In thenext sectiona brief
introductionof thepowerdissipationandthedelayinCMOScircuitsisgiven. In
section3, theCMOSadderlogic stylesandtheir characteristicsaredescribed
in details. The different adderlogic stylesarecomparedin termsof speed,
powerdissipationandsiliconarea,in section4. Also, thepower-delayproduct
of the designsis considered,dueto the importanceof this metric in modern
VLSI applications.Comparisonresultsamongdifferentrealizationsof a16-bit
adderin termsof area,delay, andpower arepresentedin Section6. Thenext
sectionprovidesresultsfor four implementationsof multipliers. Finally, the
mainpointsaresummarizedin Section7 of conclusions.

5.2 Power and Delay in CMOS Cir cuits

Sincetheobjectiveistoinvestigatethetradeoffs thatarepossibleatthecircuit
level in orderto reducepowerdissipationwhile maintainingtheoverallsystem
throughput,wemustfirst studytheparametersthataffect thepowerdissipation
andthe speedof a circuit. It is well known that oneof the major advantage
of CMOS circuits over singlepolarity MOS circuits, is that the staticpower
dissipationisverysmallandlimited to leakage.However, in somecasessuchas
biascircuitry andpseudo-nMOSlogic, staticpower is dissipated.Considering
that in CMOS circuits the leakagecurrentbetweenthe diffusion regionsand
thesubstrateis negligible, the two majorsourcesof power dissipationarethe
switchingandtheshort-circuitpower dissipation[1],=$>@?BA�C�D"E(FG G+HJILK M N E G G O (5.1)

where
?BA

is thenodetransitionactivity factor,
C
D

is theloadcapacitance,
E G G

is the supplyvoltage,H is the switching frequency. K M N is the currentwhich
ariseswhena direct pathfrom power supplyto groundis caused,for a short
periodof time during low to high or high to low nodetransitions[13]. The
switchingcomponentof power ariseswhenenergy is drawn from the power
supplyto chargeparasiticcapacitors.It is thedominantpowercomponentin a
well designedcircuit andit canbeloweredby reducingoneor moreof

?BA
,
C
D

,E G G and H , while retainingtherequiredspeedandfunctionality.
Even thoughthe exact analysisof circuit delayis quite complex, a simple

first-orderderivationcanbeused[14,15]in orderto show its dependency of the
circuit parameters P G$Q C
D7E G GR�S E G G5T EVU W�X Y O (5.2)

where
R

dependsonthetransistorsaspectratio( Z / [ X andotherdeviceparam-
eters,

E�\�]
is the transistorthresholdvoltage,and ^ is thevelocity saturation

index which variesbetween1 and2 ( ^ is equalto 1.4 for the1.5_ m process
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technologywhich is usedin the experimentsof the next section). Sincea
quadraticimprovementin power dissipationmaybeobtainedby loweringthe
supplyvoltage(equation(5.1)),many researchershave investigatedtheeffects
of lowering thesupplyvoltagein VLSI circuits. Unfortunately, reducingthe
supplyvoltagereducespower, but thedelayincreases(equation(5.2))with the
effectbeingmoredrasticat voltagescloseto thethresholdvoltage[16]. Equa-
tions (5.1) and(5.2) indicatethat by reducingthe nodeparasiticcapacitance
in a CMOS circuit, the power dissipationis reducedandthe circuit speedis
increased.

5.3 CMOS Cir cuit DesignStyles

In thefollowing, thecircuit designstylesaredescribedusingthefull adder
circuit, which is themostcommonlyusedcell in arithmeticunits. Also, their
characteristicsin termsof power dissipationanddelayareinvestigated.

5.3.1 Conventional Static CMOS Logic - CSL

ConventionalStaticCMOSlogic is usedin mostchip designsin therecent
VLSI applications. The schematicdiagramof a conventionalstatic CMOS
full addercell is illustratedin Figure5.1. The signalsnotedwith “-” arethe
complementarysignals. The pMOSFETnetwork of eachstageis the dual
network of the nMOSFETone. In order to obtaina reasonableconducting
currentto drivecapacitive loadsthewidth of thetransistorsmustbeincreased.
Thisresultsin increasedinputcapacitanceandthereforehighpowerdissipation
andpropagationdelay.
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Figure 5.1. ConventionalstaticCMOSfull adder
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5.3.2 Complementary Pass-Transistor Logic - CPL

ThemainconceptbehindCPL [5] is theuseof only annMOSFETnetwork
for theimplementationof logic functions.Thisresultsin low inputcapacitance
andhighspeedoperation.Theschematicdiagramof theCPLfull addercircuit
is shown in Figure5.2. Becausethe high voltagelevel of the pass-transistor
outputsis lower thanthe supplyvoltagelevel by the thresholdvoltageof the
passtransistors,thesignalshave to beamplifiedby usingCMOSinvertersat
theoutputs.CPL circuitsconsumelesspower thanconventionalstaticcircuits
becausethelogic swingof thepasstransistoroutputsis smallerthanthesupply
voltagelevel. Theswitchingpowerdissipatedfrom chargingor dischargingthe
passtransistoroutputsis givenby

b/cedgfVh h/fBi j�k l m/n l o h p�q�r
(5.3)

where
fBi j�k l m"dgf h h5s f�t u l

. In thecaseof conventionalstaticCMOScircuits
thevoltageswingattheoutputnodesis equalto thesupplyvoltage,resultingin
higherpowerdissipation.To minimizethestaticcurrentdueto theincomplete
turn-off of thepMOSFETin theoutputinverters,aweakpMOSFETfeedback
device canalsobeaddedin theCPL circuitsof Figure5.2, in orderto pull the
pass-transistoroutputsto full supplyvoltagelevel. However, thiswill increase
theoutputnodecapacitance,leadingto higherswitchingpowerdissipationand
higherpropagationdelay.
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Figure 5.2. Complementarypass-transistorfull adder
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5.3.3 DoublePass-Transistor Logic - DPL

DPL [6] is a modifiedversionof CPL.Thecircuit diagramof theDPL full
adderisgivenin Figure5.3. In DPLcircuitsfull-swingoperationisachievedby
simplyaddingpMOSFETtransistorsin parallelwith thenMOSFETtransistors.
Hence,theproblemsof noisemargin andspeeddegradationat reducedsupply
voltageswhicharecausedin CPLcircuitsdueto thereducedhighvoltagelevel,
areavoided. However, the additionof pMOSFETsresultsin increasedinput
capacitances.
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-C SUM

C
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Figure5.3. Doublepass-transistorfull adder

5.3.4 Static Differ ential CascodeVoltageSwitch Logic -
SDCVSL

StaticDCVSL[7], isadifferentialstyleof logic requiringbothtrueandcom-
plementarysignalstoberoutedtogates.Figure5.4showsthecircuitdiagramof
thestaticDCVSL full adder. Two complementarynMOSFETswitchingtrees
areconstructedtoapairof cross-coupledpMOSFETtransistors.Dependingon
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thedifferentialinputsoneof theoutputsis pulleddown by thecorresponding
nMOSFETnetwork. Thedifferentialoutputisthenlatchedbythecross-coupled
pMOSFETtransistors.Sincetheinputsdriveonly thenMOSFETtransistorsof
theswitchingtrees,theinputcapacitanceis typically two or threetimessmaller
thanthatof theconventionalstaticCMOSlogic.
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Figure 5.4. Staticdifferentialcascodevoltageswitchfull adder

5.3.5 Static Differ ential Split-level Logic - SDSL

A variationof thedifferential logic describedabove is the StaticDSL [9].
TheSDSLfull addercircuit diagramis illustratedin Figure5.5. Two nMOS-
FET transistorswith their gatesconnectedto a referencevoltage ( x�y z {}|~ xB� � � � ����x�� � � , x�� � � : nMOSFETthresholdvoltage)areaddedto reducethe
logic swingattheoutputnodes.Theoutputnodesareclampedatthehalf of the
supplyvoltagelevel. Thus,thecircuit operationbecomesfasterthanstandard
DCVSL circuits. However, dueto theincompleteturn-off of thecross-coupled
pMOSFETtransistors,SDSL circuits dissipatehigh staticpower dissipation.
Also, theadditionof two extra nMOSFETtransistorspergateresultsin area
overhead.
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Figure 5.5. Staticdifferentialsplit-level full adder

5.3.6 Dual-Rail Domino Logic - DRDL

Dual-Rail Domino Logic [10,11] is a precharged circuit techniquewhich
is usedto improve the speedof CMOS circuits. Figure 5.6 shows a Dual-
Rail Domino full addercell. A domino gateconsistsof a dynamicCMOS
circuit followed by a staticCMOS buffer. The dynamiccircuit consistsof a
pMOSFETprecharge transistorandan nMOSFETevaluationtransistorwith
the clock signal (CLK) appliedto their gatenodes,andan nMOSFETlogic
block which implementsthe requiredlogic function. During the precharge
phase(CLK = 0) the outputnodeof the dynamiccircuit is charged through
theprechargedpMOSFETtransistorto thesupplyvoltagelevel. Theoutputof
the staticbuffer is discharged to ground. During the evaluationphase(CLK
= 1) the evaluationnMOSFETtransistoris ON, anddependingon the logic
performedby the nMOSFETlogic block, the output of the dynamiccircuit
is eitherdischargedor it will stayprecharged. Sincein dynamiclogic every
outputnodemustbeprechargedeveryclockcycle,somenodesareprecharged
only to be immediatelydischargedagainasthe nodeis evaluated,leadingto
higherswitchingpower dissipation[1]. Onemajoradvantageof thedynamic,
prechargeddesignstylesoverthestaticstylesis thatthey eliminatethespurious
transitionsandthecorrespondingpowerdissipation.Also, dynamiclogic does
notsuffersfromshort-circuitcurrentswhichflow in staticcircuitswhenadirect

D R A F T July 12, 2002, 2:00pm D R A F T



Circuit TechniquesforReducingPowerConsumptioninAddersandMultipliers 79

pathfrom power supplyto groundis caused.However, in dynamiccircuits,
additionalpower is dissipatedby thedistributionnetwork andthedriversof the
clocksignal.

C

A B
�

B

A

CLK

CARRY

C

A

B -B

A

-B

-A

B

-C

CLK

SUM

CLK

CLK

Figure 5.6. Dual-rail dominofull adder

5.3.7 Dynamic Differ ential CascodeVoltageSwitch Logic
- DDCVSL

DynamicDCVSL [8], is a combinationbetweenthedominologic andthe
staticDCVSL. Thecircuit diagramof thedynamicDCVSL full adderis given
in Figure5.7. Theadvantageof this style over dominologic is theability to
generateany logic function. Dominologiccanonlygeneratenoninvertedforms
of logic. For example,in thedesignof a ripple carryadder, two cellsmustbe
designedfor the carry propagation,onefor the true carry signalandanother
for thecomplementaryone(in Figure5.6, thecell for the truecarrysignalis
only shown, but theonefor thecomplementarysignalis alsorequired).Using
DCVSL to designdynamiccircuitswill eliminatep-logic gatesbecauseof the
inherentavailability of complementarysignals.Thep-logicgatesusuallycause
longdelaytimesandconsumeslargeareas.
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Figure 5.7. Dynamicdifferentialcascodevoltageswitchfull adder

5.3.8 Enable/disabledCMOS Differ ential Logic- ECDL

ECDL [12] is a self-timeddifferential logic which is usedin the caseof
implementinglogic functionsusingiterative networks. It usesextra signalsto
indicatethebeginningandendingof a functionevaluation,in orderto improve
thecircuit speed.Thestructureof theECDL full adderis illustratedin Figure
5.8. ThesignalsDonei � 1 andDonei aretheinputandoutputself-timingcontrol
signals. During the disabledstate,Donei � 1 hasa valueof logic one,which
dischargesboththetrueandthecomplementaryoutputsto logic zero. During
theenabledstate,Donei � 1 changesto logic zeroandthetopmostpMOSFET
transistor(Figure5.8) is ON to provide power to the invertersbelow. Then,
dependingonthelogicof thedifferentialnMOSFETnetwork,apathexistsfrom
oneof theoutputnodestoground,holdingthatnodetogroundwhile leaving the
otheroutputnodeto bedrivento logic one.Onemajoradvantageof theECDL
circuitsis thatthereis nominimumclockingfrequency requirement.However,
ECDL circuitssuffer from extra power dissipationdueto the inverterswhich
areneededto changethe polarity of the outputnodes. Also, their complex
pull-upcircuitry leadsin extrasiliconarea.
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5.4 Power, Delay and Ar eaComparisonsof a 4-Bit Ripple
Carry Adder

Theexperimentalresultsdescribedin thissectionwereobtainedusingafour-
bit ripple carry adder. A generalblock diagramof the adderis illustratedin
Figure5.9.
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Figure 5.9. Block diagramof thefour-bit ripplecarryadder
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The circuit wasdesignedin a full custommannerfor all the designstyles
describedin the previous section,usinga 1.5� m CMOS processtechnology.
Thechannelwidth of thetransistorswas4.8� m for thenMOSFETs,and9.6� m
for thepMOSFETs.Thedesignwasbasedon thefull addercellspresentedin
Figures5.1 to 5.8.

Figure5.10shows thelayoutof theconventionalstaticfour-bit ripple carry
adder, asanexampleof thedesignedcircuits.

Figure 5.10. Layoutof theconventionalstaticfour-bit ripplecarryadder

In Table5.1 theaddersilicon areaandthenumberof the transistorsfor each
designstylearegiven. Althoughnoextensiveattemptsweremadeto minimize
area,the numberspresentedarea goodindicationof the relative areasof the
eightadderimplementations,whichaccountnotonly for thetransistors,but for
the interconnectionsaswell. For example,eventhoughDPL adderhasfewer
transistorsthantheCSL one,it haslongerinterconnections,which is reflected
by its largearea.Dynamicdesignstylesandstyleswhich usescontrolsignals
(suchasECDL) occupy extra areafor theroutingof theclock andthecontrol
signals. The smallestareais occupiedby the CPL circuit, which hasfewer
transistorsandshorterinterconnectionsthantheotheradderimplementations.

After the designof the layouts, circuit equivalentswere extractedfor a
detailedcircuit simulationusing HSPICE[2] to obtain the power anddelay
measurements.In our experiments,a supplyvoltageof 5Volts is used. All
measurementswereobtainedwith eachinputsuppliedthroughadriverconsist-
ing of two minimum-sizedinvertersin series,andeachoutputnodedriving a
minimum-sizedinverterload.

Theestimationof powerdissipationis adifficult problembecauseof its data
dependency, andhasreceived a lot of attention[17]. Somedirect simulative
powerestimationmethodshavebeenproposed[18,19],whichareexpensive in
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Table5.1. Areaandnumberof transistorsof thefour-bit ripplecarryadderimplementations

DesignStyle Adder Ar ea( � 10�L� m� ) No. of Transistors

CSL 5.42 144
CPL 4.46 88
DPL 6.52 136

SDCVSL 5.19 114
SDSL 6.39 130
DRDL 6.48 146

DDCVSL 7.22 154
ECDL 7.65 166

termsof time. Also, several power estimationmethodshave beenproposed,
wherepossibilitiesareusedtosolvethepattern-dependenceproblem. However,
in ordertoachievegoodaccuracy, thespatialandtemporalcorrelationsbetween
internalnodesshouldbe modeled[20,21]. An alternative way is the useof
statisticalmethods[22,23,17],thatcombinestheaccuracy of simulation-based
techniqueswith thespeedof probabilisticapproaches.

In thischapter, thestatisticalapproachproposedby Burchetal. [22] is used
in ordertoestimatethepowerdissipationof ourdesigns.Usingthepowermeter
sub-circuitproposedby Kang [18], HSPICEcanmeasurethe averagepower
consumedby a circuit given a setof input transitionsanda time interval. In
themethod,theinputsarerandomlygeneratedandstatisticalmeanestimation
techniquesareusedto determinethe final result. In our casefor eachadder
designwe use200 independent,pseudorandominput transitionsamples,and
thepowerconsumedfor eachsampleis monitoredby HSPICE.All

simulationswerecarriedout at 27˚C,with aninput frequency of 50MHz in
orderto accommodatetheslowestadder. Thepower dissipationmeasuresdo
notincludethepowerconsumedbythedriversandtheloads.In Figure5.11,the
probabilitydistributionsof thepowerdissipationperadditionderivedfrom the
measurements,for theeightadderimplementations,areshown. Sincethedata
inputsareindependent,power canbeapproximatedto benormallydistributed
[22]. Thisconclusioncanalsobeextractedfrom thecurvesof Figure5.11.

Hence,themeanpower dissipationis givenby������ � � �  ¡ ¢g£ (5.4)

where
��

is thesampleaverage,  is thestandarddeviation,
¢

is thenumberof
samples,and

� � � � is obtainedfrom the
� ¤

distribution for a (1-¥ )% confidence
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interval [24]. Themeanpower dissipationof theeightadderimplementations
usingthesimulationresultsandtheequation(4) is givenin Table5.2.

Thenumberof therequiredsamplesis extractedusingthestoppingcriterion
[22] of theabove method ¦ § ¨ ©�ª«¬@ ®�¯�° ± (5.5)

where° is thedesiredpercentageerrorin thepower estimate.Theerrorin our
statisticalpoweranalysisfor

®
= 200and95%confidenceinterval (

¦ § ¨ ©
= 1.96)

is lessthan7%. In Table5.2,thepercentageerrorfor eachadderdesignis also
given. For the four last designsthe error is quite small becauseof the high
normalityof theirdistributionswhich leadsto smallstandarddeviation.

Figure 5.11. Powerdissipationhistograms
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Thedelayof eachdesignwasmeasureddirectly from theoutputwaveforms
generatedby simulatingtheadderusingHSPICEfor theworstcaseinputs,that
is, inputswhichcausethecarryto ripplefromtheleastsignificantbit positionto
mostsignificantbit position.Theworstcasedelaysof theeightadderdesigns
are listed in the fourth column of Table 5.2. As mentionedin Section5.1,
themostessentialmetric of performancein modernVLSI applicationsis the
power-delayproduct.By multiplying eachpowermeasurementwith theworst
casedelay, wecanfoundthemeanpower-delayproductof thedesignsusinga
methodsimilar to thatusedfor themeanpower dissipation.Hence,themean
power-delayproductis givenby²´³¶µ¸·º¹ » ¼ ½¿¾À ÁgÂ (5.6)

Figure 5.12. Power-delayproducthistograms

where
²L³¶µ

is thesampleaveragepower-delayproduct. Themeanpower-
delayproductvaluesof theeightadderdesignsarelistedin Table5.2,andthe
probabilitydistributionsof thepower-delayproductareshown in Figure5.12.
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Table5.2. Powerdissipation,delayandpower-delayproductof thefour- bit ripplecarryadder
implementations

Adder
Design
Style

Mean Power
Dissipation per
addition (mW)

Statist.
Err or
(%)

Worst Case
Delay (nsec)

Mean Power-
DelayProduct per
addition (pJ)

CSL 0.422 Ã 0.0302 6.1 6.125 2.585 Ã 0.1850
CPL 0.238 Ã 0.0208 4.8 4.042 0.962 Ã 0.0841
DPL 0.305 Ã 0.0263 6.9 3.345 1.020 Ã 0.0879
SDCVSL 0.432 Ã 0.0362 6.5 7.986 3.450 Ã 0.2891
SDSL 2.383 Ã 0.0129 0.6 4.606 10.976Ã 0.0594
DRDL 0.641 Ã 0.0091 1.4 2.909 1.865 Ã 0.0265
DDCVSL 0.957 Ã 0.0074 0.8 3.453 3.304 Ã 0.0255
ECDL 1.721 Ã 0.0096 0.6 2.892 4.977 Ã 0.0278

As we canseein theprobabilitydistributionsof Figure5.12,thecurvesof
the dynamicdesigns(DRDL andDDCVSL) areshiftedto the right, because
of the power dissipateddueto the precharge cycles. The samephenomenon
occursin theECDLadderdueto thepowerdissipationof itsdisabledstate.The
shiftingto therightof theSDSLaddercurveiscausedbecauseof thehighstatic
power which is dissipateddueto the incompleteturn-off of thecross-coupled
pMOSFETtransistors.Theotherstaticdesignstylesaremorepower efficient
comparedto thedynamiccircuits.

ThestaticDCVSL circuit consumesmorepowerthantheconventionalstatic
circuit dueto thedifferenceof thecharging anddischarging timesof its output
nodes.Theasymmetryin the riseandfall timesof thepotentialat theseout-
put nodeswill prolongtheperiodof currentflow throughthe latchduringthe
transientstate,thusincreasingthepower dissipation.

It canbe obtainedfrom the resultsof Table5.2, that the dynamiccircuits
exhibit anincreasein speedcomparedto theconventionalstaticcircuit. Com-
paringthedynamiclogic styles,Dominologic hasbetterpower-delayproduct
characteristics(Figure5.12).Thecircuitoperationin theSDSLcircuitbecomes
fasterthanthestandardSDCVSLcircuit, dueto thereducedlogic swingat the
outputnodes,but in thecostof high staticpower dissipation.ECDL circuit is
the fasterone,but consumeshigh switchingpower dueto the inverterswhich
areneededto changethepolarity of theoutputs.

Thedesignstyleswhichusepass-transistorlogic (CPLandDPL)arethebest
in termsof powerdissipation.CPLcircuit consumeslowerpowerthantheDPL
one,becauseof its lowerparasiticcapacitance.Onthecontrary, DPL circuit is
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fasterthantheCPL, becausetheadditionof pMOSFETtransistorsin parallel
with thenMOSFETtransistorsresultsin highercircuit drivability. Also, DPL
avoidstheproblemsof noisemargin andspeeddegradationat reducedsupply
voltageswhich arecausedin CPL circuits. As shown in Figure5.12andin
Table5.2, the two stylesexhibit similar power-delayproductcharacteristics,
andthey arethemostefficient for low-power andhigh-speedapplications.

The meanpower dissipationandthepropagationdelayvaluesof theeight
adderimplementationsaresummarizedin Figure5.13. Thefastaddercircuits
lie to theleft of thefigure, andthosewith low power consumptionlie toward
thebottomof thefigure.
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Figure 5.13. Power dissipationversusdelayof theadderimplementations

5.5 Adders

In staticCMOSthedynamicpowerdissipationof acircuit dependsprimary
on thenumberof transitionsperunit area.As a result,theaveragenumberof
logic transitionsperadditioncanserveasthebasisof comparingtheefficiency
of a varietyof adderdesigns.If two addersrequireroughly thesameamount
of timeandroughlythesamenumberof gates,thecircuit whichrequiresfewer
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logic transitionsis moredesirableasit will requirelessdynamicpower. This is
only afirst orderapproximationasthepoweralsodependsonswitchingspeed,
gatesize,fan-out,outputloadinge.t.c.

Thefollowing typesof addersweresimulated:RippleCarry, ConstantBlock
Width Single-level Carry Skip, VariableBlock Width Multi-level Carry skip,
CarryLookahead,CarrySelect,andConditionalSum. Table5.3 presentsthe
worstcasenumberof gatedelays,thenumberof gates,andtheaveragenumber
of logic transitionsfor thesix 16-bit addertypes.All thegatesareassumedto
have thesamedelay, regardlessof thefan-inor fan-out.

Table5.3. WorstCaseDelay, Numberof Gates,andAverageNumberof Logic Transitionsfor
a 16-bitAdder

Adder Type Worst Case
Delay (in
gatesunits)

Number of
Gates

AverageNumber
of logic Transi-
tions

RippleCarry 36 144 90
Constant Block
Width Single-level
CarrySkip

23 156 102

Variable Block
Width Multi-level
Carryskip

17 170 108

CarryLookahead 10 200 100
CarrySelect 14 284 161
ConditionalSum 12 368 218

5.6 Multipliers

Themajority of thereal life applications,suchasmicroprocessorsanddig-
ital processingimplementations,requirethecomputationof themultiplication
operation. Specifically, speed,areaandpower efficient implementationof a
multiplier is averychallengingproblem.Here,four well-known multipliers: i)
theArray Multiplier [25], ii) theSplit Array Multiplier [26], iii) WallaceTree
Multiplier [27] and iv) the Radix-4 Modified Booth RecodedWallaceTree
Multipliers [28], arestudiedin termsof power consumption.

Twokindsof measurementsandcomparisonsin thetermsof differentdesign
parametersareperformedproviding to thedesigneraplethoraof alternativeim-
plementations.Particularly, weprovideSPICE-likemeasurementswith respect
to theaveragelogic transitionsaswell asthepower consumption.Thesecond
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kind of measurementsareperformedfollowing a typical high-level analysis
flow andis basedon astate-of-the-artCAD framework.

5.6.1 SPICE-likePower Measurementsof Multipliers

The multipliers weredescribedusingonly AND, OR, andINVERT gates.
Thesimulationwasmadeusinga programcalledCazM[29], which is similar
to SPICE.Eachmultiplier wasfed with 1.000pseudorandominputs. For the
sake of completeness,the carry save arraymultiplier andthe Wallacetreeis
presentedin thefollowing section,in orderto briefly describethearchitectures
of themostcommonmultipliers. The former is a representative paradigmof
arraymultipliers, while the Wallacetree is an efficient way to addmultiple
partialproductstogether.

A gatelevel simulationwith 10.000pseudorandominputs,enabledthegath-
eringof averagenumberof gate-outputtransitionsfor eachmultiplier. During
eachinput, the numberof gatesthat switch outputstatesis recorded,andan
averagenumberof gate-outputtransitionsper multiplicationarecomputedat
theendof thesimulation.Table5.4presentstheresults.

Table5.4. AverageNumberof Gate-OutputTransistions

AverageNumber of Gate-Output Transitions

Multiplier Type 8-bit 16-bit 32-bit
Array 570 7224 99906
Split array 569 4874 52221
Wallace 549 3793 20055
Modified booth 964 3993 19542

The averagepower dissipationper multiplication is shown in Table 5.5.
Theseresultswereobtainedby simulatingthemultiplicationof 1000pseudo-
randominputswith a clock periodof 100 ns. The resultsvary significantly.
TheWallacemultiplier, which presentsthelower power dissipation,is neither
thesmallestnor theslowestone.

5.6.2 High-Level Power Characterization of Multipliers

Thesecondpowerestimationprocedureis illustratedin Figure5.14.Thefirst
stepis thelogicsynthesisof theparameterizedandstructuralVHDL description
of the arithmeticmodules. Here, a 0.6-micronprocess,AMS standard-cell
library hasbeenused. For power characterization,only the dynamicpower
dissipation,which formsthedominantcomponentof the total power, is taken
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Table5.5. AvaragePower Dissipationfrom CAzM

Multiplier Type Power (mW) Logic Transitions

Array 43.5 7224
Split array 38.0 4874
Wallace 32.0 3793
Modified booth 41.3 3993

into account[30]. Specifically, theactivity pernode,resultingvia logic-level
simulationthat takesplacein a secondstep,is combinedwith thecapacitance
pernode,to computethepower for acertaininputvector, accordingto

Ê(Ë Ì7Í ÎÐÏÒÑÓ Ô Õ/Ö/×
Ø Ù Ú Û Ü
Ý ÞÛ Û+ß7à
Ô

(5.7)

where × Ø Ù Ú Û Ü is thecapacitanceat nodeá , Ý Û Û is thepower supplyvoltage, ß isthefrequency and à
Ô
is theactivity factorat nodeá . Theterm f â EÔ of Eq. 5.7

is actuallythenumberof transitionsfrom logic ‘1’ to logic ‘0’ pertimeunit for
thenodeá , which is equalto theratioof numberof nodetransitionsfrom logic
‘1’ to logic ‘0’, dividedby thetotalnumberof input vectors:

ß â à
Ô Ï ß Ö ã"ä Ïæå(ç

Î è é+ê Ö ã(ä Üå(ë Í ì ç Ë Î ê (5.8)

FromEq. 5.7and5.8,thepower is:

Ê(Ë Ì7Í ÎÐÏ Ý Þí�íå(ë Í ì ç Ë Î ê ÑÓ Ô Õ+Ö × Ø Ù Ú Û Ü å(ç Î è é+ê Ö ã(ä Ü (5.9)

Following this procedure,the power estimationerrorsare in the rangeof
10-25%[31], comparedwith SPICEtransistor-level simulator. However, the
accuracy of the estimatessuffices for the purposeof comparingalternative
modulearchitectures,sinceits relative evaluationis of importanceandnot the
absoluteaccuracy. The8-bit wide input modulesweresimulatedwith 50.000
randomvectors,the16-bit moduleswith 100.000vectors,the32-bit modules
with 150.000randomvectors,andthe64-bitmoduleswith 200.000vectors.It
shouldbestressedhere,that theenergyfigures,givenlaterin thecharacterization
sectionsof the arithmeticcomponents,correspondto the averageenergy per
operation.Thedifferenceof thetwo characterizationproceduresin thenumber
of testvectorsis significant.Inthissection,powermeasuresfor thesynthesized
multipliers,namelythecarrysave array, theBoothencodedWallacetreeand
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thenon-BoothencodedWallacetree,will bepresented,whileanalysisof results
andcomparisonswith previouswork aremade.

Table5.6presentsthepower estimationof thesynthesizedmultipliers. The
measurementsof power are normalizedby frequency, reflectingthe fact of
simulation,with differentoperatingfrequencies.In this way, a representative
powermeasureis given,for everykind of multiplierandfor everybit width. As
it is shown in Table5.6,themostpower-efficientmultiplier for smallbit-widths
(lessthan32bits) is thecarrysavearray, but with asmalldifference,compared
to theWallacetreewith non-Boothencoding.In the64-bit implementations,
theWallacetreewith non-Boothencodingmultiplier is themostpowerefficient
choice.Thisfactisexplainedby theglitchesarisingfromtherippleof carriesof
thearraymultiplier for largebit-widths. Finally, for all bit-widths,theWallace
treewith Boothencodingmultiplier hastheworstpower dissipation.

Table5.6. Powerdissipationestimates

Power (mW)

Multiplier Type/
Multiplier Width

8-bit 16-bit 32-bit 64-bit

CarrySaveArray 0.3084 2.2484 3.057023 20.96759
WallaceTree
(BoothEncoded)

0.7868 3.1204 5.384 23.7164

WallaceTree
(Non BoothEncoded)

0.5488 2.5992 4.2212 18.8588

Forcomparisonpurposes,Table5.7showstheresultspresentedin [29], con-
sidering16-bit implementationsof arrayandWallacetreemultipliers. These
designsweredescribedonly by AND, OR,andINVERT gates.Theimplemen-
tation technologywasa 2-level metal2-ô m process.It canbe seenthat the
arraymultiplier consumesmoreenergy thantheWallacetreemultiplier, which
is contradictoryto correspondingvaluesshown in Table5.6. Only in the64-bit
case,thearraymultiplier consumesmoreenergy thantheWallacetreemulti-
plier. Thereasonfor this is thespurioustransitionsthatoccurby therippling
of carriesfor thearraymultiplier of the64-bit implementation,which cannot
compensatetheinterconnectarea/capacitanceswitchedby thearraymultiplier.
For theremainingcases,thefactorsof thegreaterinterconnectandcell areafor
theWallacemultiplier dominatethepower performanceof thesetwo kindsof
multipliers.
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Table5.7. 16-bitMultiplier AveragePowerDissipation[29]

Multiplier Power (mW) Logic transitions

CarrySaveArray 43.5 7224
WallaceTree 32 3793

TheWallacemultiplierwith Boothencodingdissipatesthemost power, while
it is not thelargest.It is thefastestmultiplier for bit-widthslargerthan16 bits
andcanbeassumedthatBoothencodingis a ratherpower-hungryoperation.

Finally, Table5.8 depictsthe Power õ Delay product of the multipliers at
1MHz frequency. More specifically, the carry save arraymultiplier exhibits
the worst productfor all bit-widths, except the 8-bit, due to the large delay
andthesubstantialpower consumptionAlthoughthenon-BoothWallacetree
multiplier is the largest, it shows the bestPowerõ Delay product for every
bit-width. Wherespeedis of greatinterest,especiallyif large bit widths are
required,andchip areais not a problem,thenon-BoothencodedWallacetree
multiplier is thebestcandidatefor selection.

Table5.8. Power-Delayproductof Multipliers at1MHz

Power*Delay (mW*ns)
Multiplier Type/
Multiplier Width

8-bit 16-bit 32-bit 64-bit

CarrySave Array 4,13256 53,51192 141,9987 2090,049
WallaceTree
(BoothEncoded)

4,980444 25,96173 58,09336 312,345

WallaceTree
(NonBoothEncoded)

3,172064 19,8059 44,95578 251,9536

5.7 Conclusions

In this chapter, themostcommonkindsof addersandmultipliershavebeen
characterizedin termsof power, usingeitheratraditionallow-level designflow
paradigm,which is rathertediousandincompatiblewith moderndesignflows,
but providesthe mostaccurateresults,or a high-level designflow paradigm,
which is commonlyused.
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A four-bit ripplecarryadderwasused,asthebenchmarkcircuit. All thecir-
cuitshavebeendesignedinafull-custommanner, andsimulatedusingHSPICE.
A statisticalapproachwasusedin orderto analyzethe simulationresults. It
hasbeenshown thatthecircuitswhichusepass-transistorlogic (CPLandDPL)
exhibit betterpower andthepower-delayproductcharacteristicscomparedto
otherdesignstyles.

Thearraymultiplier is power-efficient for smallbit widths. Its power con-
sumptiongrows in proportionto thecubeof theword size. TheWallacemul-
tiplier is lessregular, but is morepower efficient, while its power dissipation
grows with thesquareof thewordsize.

The speedof the synthesizedoptimizedcarry look-aheadis traded-off for
theworstenergy powerconsumptionamongall theinvestigatedadders,which
have beensynthesized.As opposedto thespeedoptimizedarchitectureof the
carrylook-aheadadder, anon-optimizedarchitectureispower-efficient,though
muchslower. Power-efficient is theripple carryadder, too.
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